These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

847 related articles for article (PubMed ID: 30076486)

  • 41. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
    Tang L; Gong M; Zhang P
    Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy.
    Lim KRQ; Yoon C; Yokota T
    J Pers Med; 2018 Nov; 8(4):. PubMed ID: 30477208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [CRISPR-Cas system as molecular scissors for gene therapy].
    Heinz GA; Mashreghi MF
    Z Rheumatol; 2017 Feb; 76(1):46-49. PubMed ID: 28124743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts.
    de Carvalho TG; Schuh R; Pasqualim G; Pellenz FM; Filippi-Chiela EC; Giugliani R; Baldo G; Matte U
    Gene; 2018 Dec; 678():33-37. PubMed ID: 30081189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells.
    Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD
    Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of CRISPR/Cas9 to model brain diseases.
    Yan S; Tu Z; Li S; Li XJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Feb; 81():488-492. PubMed ID: 28392484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool.
    Sahel DK; Mittal A; Chitkara D
    J Pharmacol Exp Ther; 2019 Sep; 370(3):725-735. PubMed ID: 31122933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mosaicism in CRISPR/Cas9-mediated genome editing.
    Mehravar M; Shirazi A; Nazari M; Banan M
    Dev Biol; 2019 Jan; 445(2):156-162. PubMed ID: 30359560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenome Editing in the Brain.
    Bashtrykov P; Jeltsch A
    Adv Exp Med Biol; 2017; 978():409-424. PubMed ID: 28523558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cas9 Ribonucleoprotein Complex Delivery: Methods and Applications for Neuroinflammation.
    Campbell LA; Richie CT; Maggirwar NS; Harvey BK
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):565-577. PubMed ID: 31172397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease.
    Akyuz E; Aslan FS; Gokce E; Ilmaz O; Topcu F; Kakac S
    Eur J Neurosci; 2024 Oct; 60(8):6057-6090. PubMed ID: 39297377
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developmental progress of CRISPR/Cas9 and its therapeutic applications for HIV-1 infection.
    Deng Q; Chen Z; Shi L; Lin H
    Rev Med Virol; 2018 Sep; 28(5):e1998. PubMed ID: 30024073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors.
    Li L; He ZY; Wei XW; Gao GP; Wei YQ
    Hum Gene Ther; 2015 Jul; 26(7):452-62. PubMed ID: 26176432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease.
    Luo J; Padhi P; Jin H; Anantharam V; Zenitsky G; Wang Q; Willette AA; Kanthasamy A; Kanthasamy AG
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):595-607. PubMed ID: 30879240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome editing: the road of CRISPR/Cas9 from bench to clinic.
    Eid A; Mahfouz MM
    Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges.
    Yi L; Li J
    Biochim Biophys Acta; 2016 Dec; 1866(2):197-207. PubMed ID: 27641687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.