These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30076552)

  • 1. Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application.
    Xu X; Liu C; Niu C; Wang J; Zheng F; Li Y; Li Q
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):869-880. PubMed ID: 30076552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering.
    Si T; Luo Y; Bao Z; Zhao H
    ACS Synth Biol; 2015 Mar; 4(3):283-91. PubMed ID: 24758359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.
    Si T; Zhao H
    Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3].
    Zhao X; Jiang R; Li N; Yang Q; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):159-64. PubMed ID: 20432932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.
    Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the cytosolic NADH availability in lager yeast to improve the aroma profile of beer.
    Xu X; Bao M; Niu C; Wang J; Liu C; Zheng F; Li Y; Li Q
    Biotechnol Lett; 2019 Mar; 41(3):363-369. PubMed ID: 30707389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor.
    Wang JJ; Wang ZY; Liu XF; Guo XN; He XP; Wensel PC; Zhang BR
    J Microbiol Biotechnol; 2010 Apr; 20(4):767-74. PubMed ID: 20467251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid.
    Xu X; Niu C; Liu C; Wang J; Zheng F; Li Q
    World J Microbiol Biotechnol; 2021 Jun; 37(7):125. PubMed ID: 34173085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.
    Zhang JG; Liu XY; He XP; Guo XN; Lu Y; Zhang BR
    Biotechnol Lett; 2011 Feb; 33(2):277-84. PubMed ID: 20953665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].
    Zhang Q; Zhao X; Jiang R; Li Q; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
    Otero JM; Cimini D; Patil KR; Poulsen SG; Olsson L; Nielsen J
    PLoS One; 2013; 8(1):e54144. PubMed ID: 23349810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii.
    Samakkarn W; Vandecruys P; Moreno MRF; Thevelein J; Ratanakhanokchai K; Soontorngun N
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):153. PubMed ID: 38240846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor.
    Wang J; Wang ZY; He XP; Zhang BR
    J Microbiol Biotechnol; 2010 Nov; 20(11):1539-45. PubMed ID: 21124060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.