These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30076757)

  • 1. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture.
    Kaushik P; Henry M; Clynes M; Meleady P
    Biotechnol J; 2018 Oct; 13(10):e1700221. PubMed ID: 30076757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift.
    Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P
    J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media.
    Kaushik P; Curell RV; Henry M; Barron N; Meleady P
    Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS.
    Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased growth rate and productivity following stable depletion of miR-7 in a mAb producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis.
    Coleman O; Suda S; Meiller J; Henry M; Riedl M; Barron N; Clynes M; Meleady P
    J Proteomics; 2019 Mar; 195():23-32. PubMed ID: 30641232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells.
    Bryan L; Clynes M; Meleady P
    Biotechnol Adv; 2021; 49():107757. PubMed ID: 33895332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison.
    Heffner KM; Hizal DB; Yerganian GS; Kumar A; Can Ö; O'Meally R; Cole R; Chaerkady R; Wu H; Bowen MA; Betenbaugh MJ
    J Proteome Res; 2017 Oct; 16(10):3672-3687. PubMed ID: 28876938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.
    Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY
    Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis.
    Bryan L; Henry M; Kelly RM; Frye CC; Osborne MD; Clynes M; Meleady P
    BMC Biotechnol; 2021 Jul; 21(1):43. PubMed ID: 34301236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical strategies for phosphoproteomics.
    Thingholm TE; Jensen ON; Larsen MR
    Proteomics; 2009 Mar; 9(6):1451-68. PubMed ID: 19235172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics in cancer.
    Harsha HC; Pandey A
    Mol Oncol; 2010 Dec; 4(6):482-95. PubMed ID: 20937571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases.
    Carlage T; Kshirsagar R; Zang L; Janakiraman V; Hincapie M; Lyubarskaya Y; Weiskopf A; Hancock WS
    Biotechnol Prog; 2012; 28(3):814-23. PubMed ID: 22556165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.
    Soares NC; Spät P; Krug K; Macek B
    J Proteome Res; 2013 Jun; 12(6):2611-21. PubMed ID: 23590516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae.
    Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY
    J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial analysis of the phosphoproteome of Chinese hamster ovary cells using electrophoresis.
    Chen Z; Southwick K; Thulin CD
    J Biomol Tech; 2004 Dec; 15(4):249-56. PubMed ID: 15585821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.
    Vergara M; Berrios J; Martínez I; Díaz-Barrera A; Acevedo C; Reyes JG; Gonzalez R; Altamirano C
    PLoS One; 2015; 10(12):e0144224. PubMed ID: 26659083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.