These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30076878)
1. Comparative phenotypic analysis of CHO clones and culture media for lactate shift. Hong JK; Nargund S; Lakshmanan M; Kyriakopoulos S; Kim DY; Ang KS; Leong D; Yang Y; Lee DY J Biotechnol; 2018 Oct; 283():97-104. PubMed ID: 30076878 [TBL] [Abstract][Full Text] [Related]
2. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
3. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570 [TBL] [Abstract][Full Text] [Related]
4. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. Zagari F; Jordan M; Stettler M; Broly H; Wurm FM N Biotechnol; 2013 Jan; 30(2):238-45. PubMed ID: 22683938 [TBL] [Abstract][Full Text] [Related]
5. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
6. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Lao MS; Toth D Biotechnol Prog; 1997; 13(5):688-91. PubMed ID: 9336989 [TBL] [Abstract][Full Text] [Related]
7. Superfluous glutamine synthetase activity in Chinese Hamster Ovary cells selected under glutamine limitation is growth limiting in glutamine-replete conditions and can be inhibited by serine. Maralingannavar V; Parmar D; Panchagnula V; Gadgil M Biotechnol Prog; 2019 Sep; 35(5):e2856. PubMed ID: 31148368 [TBL] [Abstract][Full Text] [Related]
8. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Noh SM; Park JH; Lim MS; Kim JW; Lee GM Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181 [TBL] [Abstract][Full Text] [Related]
9. Effects of copper on CHO cells: cellular requirements and product quality considerations. Yuk IH; Russell S; Tang Y; Hsu WT; Mauger JB; Aulakh RP; Luo J; Gawlitzek M; Joly JC Biotechnol Prog; 2015; 31(1):226-38. PubMed ID: 25311542 [TBL] [Abstract][Full Text] [Related]
10. Considerations on the lactate consumption by CHO cells in the presence of galactose. Altamirano C; Illanes A; Becerra S; Cairó JJ; Gòdia F J Biotechnol; 2006 Oct; 125(4):547-56. PubMed ID: 16822573 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
12. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546 [TBL] [Abstract][Full Text] [Related]
13. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Xu P; Dai XP; Graf E; Martel R; Russell R Biotechnol Prog; 2014; 30(6):1457-68. PubMed ID: 25079388 [TBL] [Abstract][Full Text] [Related]
14. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance. Li J; Wong CL; Vijayasankaran N; Hudson T; Amanullah A Biotechnol Bioeng; 2012 May; 109(5):1173-86. PubMed ID: 22124879 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of CHO cells for the development of a robust protein production platform. Gupta SK; Srivastava SK; Sharma A; Nalage VHH; Salvi D; Kushwaha H; Chitnis NB; Shukla P PLoS One; 2017; 12(8):e0181455. PubMed ID: 28763459 [TBL] [Abstract][Full Text] [Related]
16. Feed development for fed-batch CHO production process by semisteady state analysis. Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108 [TBL] [Abstract][Full Text] [Related]
17. Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells. Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM Biotechnol Lett; 2012 Apr; 34(4):619-26. PubMed ID: 22127760 [TBL] [Abstract][Full Text] [Related]
18. Acetate accumulation and regulation by process parameters control in Chinese hamster ovary cell culture. Zhou Y; Han H; Zhang L; Huang H; Sun R; Zhou H; Zhou W Biotechnol Prog; 2023 Jan; 39(1):e3303. PubMed ID: 36168987 [TBL] [Abstract][Full Text] [Related]
19. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Kim DY; Chaudhry MA; Kennard ML; Jardon MA; Braasch K; Dionne B; Butler M; Piret JM Biotechnol Prog; 2013; 29(1):165-75. PubMed ID: 23125190 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]