BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30076912)

  • 1. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents.
    Goldammer J; Dürr V
    Arthropod Struct Dev; 2018 Sep; 47(5):465-481. PubMed ID: 30076912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input of hair field afferents to a descending interneuron.
    Jaske B; Lepreux G; Dürr V
    J Neurophysiol; 2021 Aug; 126(2):398-412. PubMed ID: 34161139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central drive and proprioceptive control of antennal movements in the walking stick insect.
    Krause AF; Winkler A; Dürr V
    J Physiol Paris; 2013; 107(1-2):116-29. PubMed ID: 22728470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway.
    Ache JM; Dürr V
    J Neurophysiol; 2013 Nov; 110(9):2099-112. PubMed ID: 23926042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A direct descending pathway informing locomotor networks about tactile sensor movement.
    Ache JM; Haupt SS; Dürr V
    J Neurosci; 2015 Mar; 35(9):4081-91. PubMed ID: 25740535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion.
    Goldammer J; Büschges A; Dürr V
    PLoS One; 2023; 18(8):e0290359. PubMed ID: 37651417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.
    Ache JM; Dürr V
    PLoS Comput Biol; 2015 Jul; 11(7):e1004263. PubMed ID: 26158851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active tactile exploration for adaptive locomotion in the stick insect.
    Schütz C; Dürr V
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):2996-3005. PubMed ID: 21969681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal organization of a fast-mediating cephalothoracic pathway for antennal-tactile information in the cricket (Gryllus bimaculatus DeGeer).
    Schöneich S; Schildberger K; Stevenson PA
    J Comp Neurol; 2011 Jun; 519(9):1677-90. PubMed ID: 21452239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprioceptors and fast antennal reflexes in the ant Odontomachus (Formicidae, Ponerinae).
    Ehmer B; Gronenberg W
    Cell Tissue Res; 1997 Oct; 290(1):153-65. PubMed ID: 9377635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera).
    Sant HH; Sane SP
    J Comp Neurol; 2018 Oct; 526(14):2215-2230. PubMed ID: 29907958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioural function and development of body-to-limb proportions and active movement ranges in three stick insect species.
    Dürr V; Mesanovic A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):265-284. PubMed ID: 35986777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking.
    Dürr V; König Y; Kittmann R
    J Comp Physiol A; 2001 Mar; 187(2):131-44. PubMed ID: 15524001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches.
    Mongeau JM; Demir A; Lee J; Cowan NJ; Full RJ
    J Exp Biol; 2013 Dec; 216(Pt 24):4530-41. PubMed ID: 24307709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
    Nishino H; Nishikawa M; Yokohari F; Mizunami M
    J Comp Neurol; 2005 Dec; 493(2):291-308. PubMed ID: 16255033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN; Dürr V; Dirks JH
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30045891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür).
    Xie GY; Zhao XC; Ma BW; Guo P; Li GP; Feng HQ; Wu GL
    PLoS One; 2016; 11(8):e0160161. PubMed ID: 27478892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse topographic organization of pheromone-sensitive afferents from different antennal surfaces in the American cockroach.
    Nishino H; Watanabe H; Kamimura I; Yokohari F; Mizunami M
    Neurosci Lett; 2015 May; 595():35-40. PubMed ID: 25849528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active tactile sampling by an insect in a step-climbing paradigm.
    Krause AF; Dürr V
    Front Behav Neurosci; 2012; 6():30. PubMed ID: 22754513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.