These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30076981)
1. Plastome phylogenomics of the early-diverging eudicot family Berberidaceae. Sun Y; Moore MJ; Landis JB; Lin N; Chen L; Deng T; Zhang J; Meng A; Zhang S; Tojibaev KS; Sun H; Wang H Mol Phylogenet Evol; 2018 Nov; 128():203-211. PubMed ID: 30076981 [TBL] [Abstract][Full Text] [Related]
2. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Sun Y; Moore MJ; Zhang S; Soltis PS; Soltis DE; Zhao T; Meng A; Li X; Li J; Wang H Mol Phylogenet Evol; 2016 Mar; 96():93-101. PubMed ID: 26724406 [TBL] [Abstract][Full Text] [Related]
3. Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae). Ye WQ; Yap ZY; Li P; Comes HP; Qiu YX Mol Phylogenet Evol; 2018 Oct; 127():978-987. PubMed ID: 29981470 [TBL] [Abstract][Full Text] [Related]
4. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. Sun Y; Moore MJ; Lin N; Adelalu KF; Meng A; Jian S; Yang L; Li J; Wang H BMC Genomics; 2017 Aug; 18(1):592. PubMed ID: 28793854 [TBL] [Abstract][Full Text] [Related]
5. Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Yan M; Fritsch PW; Moore MJ; Feng T; Meng A; Yang J; Deng T; Zhao C; Yao X; Sun H; Wang H Mol Phylogenet Evol; 2018 Apr; 121():198-211. PubMed ID: 29360618 [TBL] [Abstract][Full Text] [Related]
7. Complete plastid genome sequencing of Trochodendraceae reveals a significant expansion of the inverted repeat and suggests a Paleogene divergence between the two extant species. Sun YX; Moore MJ; Meng AP; Soltis PS; Soltis DE; Li JQ; Wang HC PLoS One; 2013; 8(4):e60429. PubMed ID: 23577110 [TBL] [Abstract][Full Text] [Related]
8. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Wang HX; Liu H; Moore MJ; Landrein S; Liu B; Zhu ZX; Wang HF Mol Phylogenet Evol; 2020 Jan; 142():106641. PubMed ID: 31605813 [TBL] [Abstract][Full Text] [Related]
9. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Wang JH; Moore MJ; Wang H; Zhu ZX; Wang HF Gene; 2021 Jan; 765():145103. PubMed ID: 32889057 [TBL] [Abstract][Full Text] [Related]
10. Plastid Phylogenomics and Plastome Evolution of Nandinoideae (Berberidaceae). Song S; Zubov D; Comes HP; Li H; Liu X; Zhong X; Lee J; Yang Z; Li P Front Plant Sci; 2022; 13():913011. PubMed ID: 35873997 [TBL] [Abstract][Full Text] [Related]
11. Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma-Gastrochilus clades (Orchidaceae, Aeridinae). Liu DK; Tu XD; Zhao Z; Zeng MY; Zhang S; Ma L; Zhang GQ; Wang MM; Liu ZJ; Lan SR; Li MH; Chen SP Mol Phylogenet Evol; 2020 Apr; 145():106729. PubMed ID: 31926307 [TBL] [Abstract][Full Text] [Related]
12. More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae). Köhler M; Reginato M; Jin JJ; Majure LC Ann Bot; 2023 Nov; 132(4):771-786. PubMed ID: 37467174 [TBL] [Abstract][Full Text] [Related]
13. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution. Amenu SG; Wei N; Wu L; Oyebanji O; Hu G; Zhou Y; Wang Q BMC Plant Biol; 2022 Feb; 22(1):88. PubMed ID: 35219317 [TBL] [Abstract][Full Text] [Related]
14. Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. McManus HA; Fučíková K; Lewis PO; Lewis LA; Karol KG Am J Bot; 2018 Mar; 105(3):315-329. PubMed ID: 29722901 [TBL] [Abstract][Full Text] [Related]
15. Total duplication of the small single copy region in the angiosperm plastome: Rearrangement and inverted repeat instability in Asarum. Sinn BT; Sedmak DD; Kelly LM; Freudenstein JV Am J Bot; 2018 Jan; 105(1):71-84. PubMed ID: 29532923 [TBL] [Abstract][Full Text] [Related]
16. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. Lee C; Choi IS; Cardoso D; de Lima HC; de Queiroz LP; Wojciechowski MF; Jansen RK; Ruhlman TA Plant J; 2021 Aug; 107(3):861-875. PubMed ID: 34021942 [TBL] [Abstract][Full Text] [Related]
17. Order-level fern plastome phylogenomics: new insights from Hymenophyllales. Kuo LY; Qi X; Ma H; Li FW Am J Bot; 2018 Sep; 105(9):1545-1555. PubMed ID: 30168575 [TBL] [Abstract][Full Text] [Related]
18. Evolution of 101 Apocynaceae plastomes and phylogenetic implications. Wang Y; Zhang CF; Ochieng Odago W; Jiang H; Yang JX; Hu GW; Wang QF Mol Phylogenet Evol; 2023 Mar; 180():107688. PubMed ID: 36581140 [TBL] [Abstract][Full Text] [Related]
19. Plastome characteristics of Cannabaceae. Zhang H; Jin J; Moore MJ; Yi T; Li D Plant Divers; 2018 Jun; 40(3):127-137. PubMed ID: 30175293 [TBL] [Abstract][Full Text] [Related]
20. Plastome Evolution in the Hyperdiverse Genus Wei N; Pérez-Escobar OA; Musili PM; Huang WC; Yang JB; Hu AQ; Hu GW; Grace OM; Wang QF Front Plant Sci; 2021; 12():712064. PubMed ID: 34421963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]