These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 30077007)

  • 21. Pannexin-1 channel dysfunction in the medial prefrontal cortex mediates depressive-like behaviors induced by chronic social defeat stress and administration of mefloquine in mice.
    Ni M; He JG; Zhou HY; Lu XJ; Hu YL; Mao L; Wang F; Chen JG; Hu ZL
    Neuropharmacology; 2018 Jul; 137():256-267. PubMed ID: 29221793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production.
    Krick S; Wang J; St-Pierre M; Gonzalez C; Dahl G; Salathe M
    J Biol Chem; 2016 Mar; 291(12):6423-32. PubMed ID: 26823467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles.
    Bhat EA; Sajjad N
    Mol Cell Biochem; 2021 Mar; 476(3):1529-1540. PubMed ID: 33394272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma.
    Seo JH; Dalal MS; Calderon F; Contreras JE
    J Neuroinflammation; 2020 Aug; 17(1):245. PubMed ID: 32819386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop.
    Michalski K; Kawate T
    J Gen Physiol; 2016 Feb; 147(2):165-74. PubMed ID: 26755773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pannexin 1 contributes to ATP release in airway epithelia.
    Ransford GA; Fregien N; Qiu F; Dahl G; Conner GE; Salathe M
    Am J Respir Cell Mol Biol; 2009 Nov; 41(5):525-34. PubMed ID: 19213873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of a pannexin 2-pannexin 1 chimeric protein supports divergent roles for pannexin C-termini in cellular localization.
    Wicki-Stordeur LE; Boyce AK; Swayne LA
    Cell Commun Adhes; 2013 Aug; 20(3-4):73-9. PubMed ID: 23659289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells.
    Ma W; Hui H; Pelegrin P; Surprenant A
    J Pharmacol Exp Ther; 2009 Feb; 328(2):409-18. PubMed ID: 19023039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of pannexin 1 in Clostridium perfringens beta-toxin-caused cell death.
    Seike S; Takehara M; Kobayashi K; Nagahama M
    Biochim Biophys Acta; 2016 Dec; 1858(12):3150-3156. PubMed ID: 27720686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Pannexin 1 Channel and the P2X7 Receptor Are in Complex Interplay to Regulate the Release of Soluble Ectonucleotidases in the Murine Bladder Lamina Propria.
    Aresta Branco MSL; Gutierrez Cruz A; Peri LE; Mutafova-Yambolieva VN
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nerve growth factor, sphingomyelins, and sensitization in sensory neurons.
    Nicol GD
    Sheng Li Xue Bao; 2008 Oct; 60(5):603-4. PubMed ID: 18958367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The weak voltage dependence of pannexin 1 channels can be tuned by N-terminal modifications.
    Michalski K; Henze E; Nguyen P; Lynch P; Kawate T
    J Gen Physiol; 2018 Dec; 150(12):1758-1768. PubMed ID: 30377218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cystic fibrosis transmembrane conductance regulator-dependent bicarbonate entry controls rat cardiomyocyte ATP release via pannexin1 through mitochondrial signalling and caspase activation.
    Wang Y; Zhao J; Cai Y; Ballard HJ
    Acta Physiol (Oxf); 2020 Sep; 230(1):e13495. PubMed ID: 32386453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents.
    Burma NE; Bonin RP; Leduc-Pessah H; Baimel C; Cairncross ZF; Mousseau M; Shankara JV; Stemkowski PL; Baimoukhametova D; Bains JS; Antle MC; Zamponi GW; Cahill CM; Borgland SL; De Koninck Y; Trang T
    Nat Med; 2017 Mar; 23(3):355-360. PubMed ID: 28134928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pannexin-1 Channels Are Essential for Mast Cell Degranulation Triggered During Type I Hypersensitivity Reactions.
    Harcha PA; López X; Sáez PJ; Fernández P; Barría I; Martínez AD; Sáez JC
    Front Immunol; 2019; 10():2703. PubMed ID: 31849935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stomatin inhibits pannexin-1-mediated whole-cell currents by interacting with its carboxyl terminal.
    Zhan H; Moore CS; Chen B; Zhou X; Ma XM; Ijichi K; Bennett MV; Li XJ; Crocker SJ; Wang ZW
    PLoS One; 2012; 7(6):e39489. PubMed ID: 22768083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region.
    Sandilos JK; Chiu YH; Chekeni FB; Armstrong AJ; Walk SF; Ravichandran KS; Bayliss DA
    J Biol Chem; 2012 Mar; 287(14):11303-11. PubMed ID: 22311983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pannexin 1 activation and inhibition is permeant-selective.
    Nielsen BS; Toft-Bertelsen TL; Lolansen SD; Anderson CL; Nielsen MS; Thompson RJ; MacAulay N
    J Physiol; 2020 Jan; 598(2):361-379. PubMed ID: 31698505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The bizarre pharmacology of the ATP release channel pannexin1.
    Dahl G; Qiu F; Wang J
    Neuropharmacology; 2013 Dec; 75():583-93. PubMed ID: 23499662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure versus function: Are new conformations of pannexin 1 yet to be resolved?
    Mim C; Perkins G; Dahl G
    J Gen Physiol; 2021 May; 153(5):. PubMed ID: 33835130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.