BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30077102)

  • 1. Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles.
    Cunha Lopes TL; de Cássia Siqueira-Soares R; Gonçalves de Almeida GH; Romano de Melo GS; Barreto GE; de Oliveira DM; Dos Santos WD; Ferrarese-Filho O; Marchiosi R
    Chemosphere; 2018 Nov; 211():226-234. PubMed ID: 30077102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth.
    Almeida GHG; Siqueira-Soares RC; Mota TR; Oliveira DM; Abrahão J; Foletto-Felipe MP; Dos Santos WD; Ferrarese-Filho O; Marchiosi R
    Plant Physiol Biochem; 2021 Feb; 159():335-346. PubMed ID: 33429191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzoxazolin-2(3H)-one inhibits soybean growth and alters the monomeric composition of lignin.
    Parizotto AV; Bubna GA; Marchiosi R; Soares AR; Ferrarese Mde L; Ferrarese-Filho O
    Plant Signal Behav; 2015; 10(2):e989059. PubMed ID: 25826260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium-induced lignification restricts soybean root growth.
    Finger-Teixeira A; Ferrarese Mde L; Soares AR; da Silva D; Ferrarese-Filho O
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1959-64. PubMed ID: 20817298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max).
    Bubna GA; Lima RB; Zanardo DY; Dos Santos WD; Ferrarese Mde L; Ferrarese-Filho O
    J Plant Physiol; 2011 Sep; 168(14):1627-33. PubMed ID: 21489652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.
    Hu J; Guo H; Li J; Gan Q; Wang Y; Xing B
    Environ Pollut; 2017 Feb; 221():199-208. PubMed ID: 27916492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of γ-Fe
    Hu J; Guo H; Li J; Wang Y; Xiao L; Xing B
    J Nanobiotechnology; 2017 Jul; 15(1):51. PubMed ID: 28693496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction mechanisms between α-Fe
    Li J; Hu J; Xiao L; Wang Y; Wang X
    Sci Total Environ; 2018 Jun; 625():677-685. PubMed ID: 29306155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells.
    Nair PM; Chung IM
    Biol Trace Elem Res; 2014 Dec; 162(1-3):342-52. PubMed ID: 25190470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Physiological Impact of
    Hu J; Wu C; Ren H; Wang Y; Li J; Huang J
    J Nanosci Nanotechnol; 2018 Jan; 18(1):743-752. PubMed ID: 29768904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-DOPA increases lignification associated with Glycine max root growth-inhibition.
    Soares AR; Ferrarese Mde L; Siqueira Rde C; Böhm FM; Ferrarese-Filho O
    J Chem Ecol; 2007 Feb; 33(2):265-75. PubMed ID: 17195115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).
    Li J; Hu J; Ma C; Wang Y; Wu C; Huang J; Xing B
    Chemosphere; 2016 Sep; 159():326-334. PubMed ID: 27314633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cinnamic acid increases lignin production and inhibits soybean root growth.
    Salvador VH; Lima RB; dos Santos WD; Soares AR; Böhm PA; Marchiosi R; Ferrarese Mde L; Ferrarese-Filho O
    PLoS One; 2013; 8(7):e69105. PubMed ID: 23922685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impacts of γ-Fe
    Wang Y; Wang S; Xu M; Xiao L; Dai Z; Li J
    Environ Pollut; 2019 Jun; 249():1011-1018. PubMed ID: 31146307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses.
    Ates M; Demir V; Arslan Z; Kaya H; Yılmaz S; Camas M
    Aquat Toxicol; 2016 Aug; 177():22-32. PubMed ID: 27232508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure.
    Wang Y; Hu J; Dai Z; Li J; Huang J
    Plant Physiol Biochem; 2016 Nov; 108():353-360. PubMed ID: 27518375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.
    Li J; Chang PR; Huang J; Wang Y; Yuan H; Ren H
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5561-7. PubMed ID: 23882795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron (III) oxide nanoparticles alleviate arsenic induced stunting in Vigna radiata.
    Shabnam N; Kim M; Kim H
    Ecotoxicol Environ Saf; 2019 Nov; 183():109496. PubMed ID: 31376808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.
    dos Santos WD; Ferrarese Mde L; Finger A; Teixeira AC; Ferrarese-Filho O
    J Chem Ecol; 2004 Jun; 30(6):1203-12. PubMed ID: 15303323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Alpha and Gamma-Iron Oxide Nanoparticles on Marine Microalgae Species.
    Demir V; Ates M; Arslan Z; Camas M; Celik F; Bogatu C; Can ŞS
    Bull Environ Contam Toxicol; 2015 Dec; 95(6):752-7. PubMed ID: 26276558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.