BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 30078211)

  • 21. Evidence of Intertissue Differences in the DNA Damage Response and the Pro-oncogenic Role of NF-κB in Mice with Disengaged BRCA1-PALB2 Interaction.
    Mahdi AH; Huo Y; Tan Y; Simhadri S; Vincelli G; Gao J; Ganesan S; Xia B
    Cancer Res; 2018 Jul; 78(14):3969-3981. PubMed ID: 29739757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tackling cellular senescence by targeting miRNAs.
    Wang Z; Gao J; Xu C
    Biogerontology; 2022 Aug; 23(4):387-400. PubMed ID: 35727469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular Senescence: What, Why, and How.
    Regulski MJ
    Wounds; 2017 Jun; 29(6):168-174. PubMed ID: 28682291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative Stress and the Epigenetics of Cell Senescence: Insights from Progeroid Syndromes.
    Romá-Mateo C; Seco-Cervera M; Ibáñez-Cabellos JS; Pérez G; Berenguer-Pascual E; Rodríguez LR; García-Giménez JL
    Curr Pharm Des; 2018; 24(40):4755-4770. PubMed ID: 30644344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ROS-induced PADI2 downregulation accelerates cellular senescence via the stimulation of SASP production and NFκB activation.
    Kim HJ; Kim WJ; Shin HR; Yoon HI; Moon JI; Lee E; Lim JM; Cho YD; Lee MH; Kim HG; Ryoo HM
    Cell Mol Life Sci; 2022 Feb; 79(3):155. PubMed ID: 35218410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oncogene-induced senescence pathways weave an intricate tapestry.
    Yaswen P; Campisi J
    Cell; 2007 Jan; 128(2):233-4. PubMed ID: 17254959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence.
    Tonnessen-Murray CA; Lozano G; Jackson JG
    Cold Spring Harb Perspect Med; 2017 Feb; 7(2):. PubMed ID: 27881444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Punicalagin induces senescent growth arrest in human papillary thyroid carcinoma BCPAP cells via NF-κB signaling pathway.
    Cheng X; Yao X; Xu S; Pan J; Yu H; Bao J; Guan H; Lu R; Zhang L
    Biomed Pharmacother; 2018 Jul; 103():490-498. PubMed ID: 29677534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence.
    Kodama R; Kato M; Furuta S; Ueno S; Zhang Y; Matsuno K; Yabe-Nishimura C; Tanaka E; Kamata T
    Genes Cells; 2013 Jan; 18(1):32-41. PubMed ID: 23216904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MLL1 is essential for the senescence-associated secretory phenotype.
    Capell BC; Drake AM; Zhu J; Shah PP; Dou Z; Dorsey J; Simola DF; Donahue G; Sammons M; Rai TS; Natale C; Ridky TW; Adams PD; Berger SL
    Genes Dev; 2016 Feb; 30(3):321-36. PubMed ID: 26833731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity.
    Chien Y; Scuoppo C; Wang X; Fang X; Balgley B; Bolden JE; Premsrirut P; Luo W; Chicas A; Lee CS; Kogan SC; Lowe SW
    Genes Dev; 2011 Oct; 25(20):2125-36. PubMed ID: 21979375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods for detection of mitochondrial reactive oxygen species in senescent cells.
    Salma F; Yassire O; Youssef B; Corinne D; Ameziane El Hassani R
    Methods Cell Biol; 2024; 181():33-41. PubMed ID: 38302242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane-Bound CD40L Promotes Senescence and Initiates Senescence-Associated Secretory Phenotype via NF-κB Activation in Lung Adenocarcinoma.
    Xu W; Li Y; Yuan WW; Yin Y; Song WW; Wang Y; Huang QQ; Zhao WH; Wu JQ
    Cell Physiol Biochem; 2018; 48(4):1793-1803. PubMed ID: 30078020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence.
    Vizioli MG; Liu T; Miller KN; Robertson NA; Gilroy K; Lagnado AB; Perez-Garcia A; Kiourtis C; Dasgupta N; Lei X; Kruger PJ; Nixon C; Clark W; Jurk D; Bird TG; Passos JF; Berger SL; Dou Z; Adams PD
    Genes Dev; 2020 Mar; 34(5-6):428-445. PubMed ID: 32001510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Senescence-induced endothelial phenotypes underpin immune-mediated senescence surveillance.
    Yin K; Patten D; Gough S; de Barros Gonçalves S; Chan A; Olan I; Cassidy L; Poblocka M; Zhu H; Lun A; Schuijs M; Young A; Martinez-Jimenez C; Halim TYF; Shetty S; Narita M; Hoare M
    Genes Dev; 2022 May; 36(9-10):533-549. PubMed ID: 35618311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of p53 and NF-κB signaling by WIP1 and MIF: role in cellular senescence and organismal aging.
    Salminen A; Kaarniranta K
    Cell Signal; 2011 May; 23(5):747-52. PubMed ID: 20940041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Quantitative Measurement of Reactive Oxygen Species and Senescence-associated Secretory Phenotype in Normal Human Fibroblasts During Oncogene-induced Senescence.
    Kim YY; Um JH; Yun J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression.
    Shi Y; Bollam SR; White SM; Laughlin SZ; Graham GT; Wadhwa M; Chen H; Nguyen C; Vitte J; Giovannini M; Toretsky J; Yi C
    Dev Cell; 2016 Nov; 39(4):452-465. PubMed ID: 27818180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox control of senescence and age-related disease.
    Chandrasekaran A; Idelchik MDPS; Melendez JA
    Redox Biol; 2017 Apr; 11():91-102. PubMed ID: 27889642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ginsenoside Rg3 Prevents Oxidative Stress-Induced Astrocytic Senescence and Ameliorates Senescence Paracrine Effects on Glioblastoma.
    Hou J; Kim S; Sung C; Choi C
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28891967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.