BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30078319)

  • 21. Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function.
    Degendorfer G; Chuang CY; Mariotti M; Hammer A; Hoefler G; Hägglund P; Malle E; Wise SG; Davies MJ
    Free Radic Biol Med; 2018 Feb; 115():219-231. PubMed ID: 29191462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical.
    Goldstein S; Squadrito GL; Pryor WA; Czapski G
    Free Radic Biol Med; 1996; 21(7):965-74. PubMed ID: 8937882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permeation of phospholipid membranes by peroxynitrite.
    Khairutdinov RF; Coddington JW; Hurst JK
    Biochemistry; 2000 Nov; 39(46):14238-49. PubMed ID: 11087373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the permeation of reactive species across nitrated membranes by computer simulations.
    Oliveira MC; Yusupov M; Cordeiro RM; Bogaerts A
    Comput Biol Med; 2021 Sep; 136():104768. PubMed ID: 34426173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxynitrous acid--where is the hydroxyl radical?
    Kissner R; Nauser T; Kurz C; Koppenol WH
    IUBMB Life; 2003; 55(10-11):567-72. PubMed ID: 14711000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of peroxynitrite-induced nitration of tyrosine by glutathione in the presence of carbon dioxide through both radical repair and peroxynitrate formation.
    Kirsch M; Lehnig M; Korth HG; Sustmann R; de Groot H
    Chemistry; 2001 Aug; 7(15):3313-20. PubMed ID: 11531117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homolytic pathways drive peroxynitrite-dependent Trolox C oxidation.
    Botti H; Trujillo M; Batthyány C; Rubbo H; Ferrer-Sueta G; Radi R
    Chem Res Toxicol; 2004 Oct; 17(10):1377-84. PubMed ID: 15487899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peroxynitrite-mediated oxidation of plasma fibronectin.
    Degendorfer G; Chuang CY; Kawasaki H; Hammer A; Malle E; Yamakura F; Davies MJ
    Free Radic Biol Med; 2016 Aug; 97():602-615. PubMed ID: 27396946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycosaminoglycans are fragmented by hydroxyl, carbonate, and nitrogen dioxide radicals in a site-selective manner: implications for peroxynitrite-mediated damage at sites of inflammation.
    Kennett EC; Davies MJ
    Free Radic Biol Med; 2009 Aug; 47(4):389-400. PubMed ID: 19427378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid.
    Trujillo M; Folkes L; Bartesaghi S; Kalyanaraman B; Wardman P; Radi R
    Free Radic Biol Med; 2005 Jul; 39(2):279-88. PubMed ID: 15964519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Indirect oxidation of ferrocyanide by peroxynitrite--evidence against the formation of hydroxyl radicals.
    Goldstein S; Czapski G
    Nitric Oxide; 1997 Oct; 1(5):417-22. PubMed ID: 9441912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chain scission of hyaluronan by peroxynitrite.
    Al-Assaf S; Navaratnam S; Parsons BJ; Phillips GO
    Arch Biochem Biophys; 2003 Mar; 411(1):73-82. PubMed ID: 12590925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melatonin nitrosation promoted by NO*2; comparison with the peroxynitrite reaction.
    Peyrot F; Houée-Levin C; Ducrocq C
    Free Radic Res; 2006 Sep; 40(9):910-20. PubMed ID: 17015270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peroxynitrite-dependent aromatic hydroxylation and nitration of salicylate and phenylalanine. Is hydroxyl radical involved?
    Kaur H; Whiteman M; Halliwell B
    Free Radic Res; 1997 Jan; 26(1):71-82. PubMed ID: 9018474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporation of the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester to red blood cell membranes to study peroxynitrite-dependent reactions.
    Romero N; Peluffo G; Bartesaghi S; Zhang H; Joseph J; Kalyanaraman B; Radi R
    Chem Res Toxicol; 2007 Nov; 20(11):1638-48. PubMed ID: 17941688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pathobiochemistry of nitrogen dioxide.
    Kirsch M; Korth HG; Sustmann R; de Groot H
    Biol Chem; 2002; 383(3-4):389-99. PubMed ID: 12033430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peroxynitrate and peroxynitrite: a complete basis set investigation of similarities and differences between these NOx species.
    Olson LP; Bartberger MD; Houk KN
    J Am Chem Soc; 2003 Apr; 125(13):3999-4006. PubMed ID: 12656637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peroxynitrite reactivity with amino acids and proteins.
    Alvarez B; Radi R
    Amino Acids; 2003 Dec; 25(3-4):295-311. PubMed ID: 14661092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic studies on the reaction between cob(II)alamin and peroxynitrite: evidence for a dual role for cob(II)alamin as a scavenger of peroxynitrous acid and nitrogen dioxide.
    Mukherjee R; Brasch NE
    Chemistry; 2011 Oct; 17(42):11805-12. PubMed ID: 21922568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitration and photonitration of naphthalene in aqueous systems.
    Vione D; Maurino V; Minero C; Pelizzetti E
    Environ Sci Technol; 2005 Feb; 39(4):1101-10. PubMed ID: 15773483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.