These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30078329)

  • 21. Cu from dissolution of CuO nanoparticles signals changes in root morphology.
    Adams J; Wright M; Wagner H; Valiente J; Britt D; Anderson A
    Plant Physiol Biochem; 2017 Jan; 110():108-117. PubMed ID: 27544889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study.
    Muna M; Heinlaan M; Blinova I; Vija H; Kahru A
    Environ Pollut; 2017 Dec; 231(Pt 2):1488-1496. PubMed ID: 28967571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper pre-exposure reduces AgNP bioavailability to wheat.
    Cai W; Wang Y; Dang F; Zhou D
    Sci Total Environ; 2020 Mar; 707():136084. PubMed ID: 31863980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.
    Andreotti F; Mucha AP; Caetano C; Rodrigues P; Rocha Gomes C; Almeida CM
    Ecotoxicol Environ Saf; 2015 Oct; 120():303-9. PubMed ID: 26094036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions.
    Zhou D; Jin S; Li L; Wang Y; Weng N
    J Environ Sci (China); 2011; 23(11):1852-7. PubMed ID: 22432310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum.
    Roubeau Dumont E; Elger A; Azéma C; Castillo Michel H; Surble S; Larue C
    Sci Total Environ; 2022 Jan; 803():150001. PubMed ID: 34492493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response.
    Zhang Z; Ke M; Qu Q; Peijnenburg WJGM; Lu T; Zhang Q; Ye Y; Xu P; Du B; Sun L; Qian H
    Environ Pollut; 2018 Aug; 239():689-697. PubMed ID: 29715688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system.
    Peng C; Tong H; Shen C; Sun L; Yuan P; He M; Shi J
    Sci Total Environ; 2020 Apr; 713():136662. PubMed ID: 31958734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging.
    Kopittke PM; de Jonge MD; Wang P; McKenna BA; Lombi E; Paterson DJ; Howard DL; James SA; Spiers KM; Ryan CG; Johnson AAT; Menzies NW
    New Phytol; 2014 Mar; 201(4):1251-1262. PubMed ID: 24206613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare.
    Korotkova AM; Lebedev SV; Gavrish IA
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10220-10233. PubMed ID: 28265875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.
    Regier N; Cosio C; von Moos N; Slaveykova VI
    Chemosphere; 2015 Jun; 128():56-61. PubMed ID: 25655819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes.
    Fernandes JP; Almeida CMR; Andreotti F; Barros L; Almeida T; Mucha AP
    Sci Total Environ; 2017 Mar; 581-582():801-810. PubMed ID: 28069300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cu and CuO Nanoparticles Affected the Germination and the Growth of Barley (Hordeum vulgare L.) Seedling.
    Kadri O; Karmous I; Kharbech O; Arfaoui H; Chaoui A
    Bull Environ Contam Toxicol; 2022 Mar; 108(3):585-593. PubMed ID: 35064278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression.
    Wang Z; Xu L; Zhao J; Wang X; White JC; Xing B
    Environ Sci Technol; 2016 Jun; 50(11):6008-16. PubMed ID: 27226046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice].
    Wang SL; Zhang YX; Liu HZ; Xin H
    Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of cerium oxide and copper oxide nanoparticles bioaccessibility from radish using SP-ICP-MS.
    Hayder M; Wojcieszek J; Asztemborska M; Zhou Y; Ruzik L
    J Sci Food Agric; 2020 Oct; 100(13):4950-4958. PubMed ID: 32484244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CuO Nanoparticles Alter the Rhizospheric Bacterial Community and Local Nitrogen Cycling for Wheat Grown in a Calcareous Soil.
    Guan X; Gao X; Avellan A; Spielman-Sun E; Xu J; Laughton S; Yun J; Zhang Y; Bland GD; Zhang Y; Zhang R; Wang X; Casman EA; Lowry GV
    Environ Sci Technol; 2020 Jul; 54(14):8699-8709. PubMed ID: 32579348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Photon Microscopy and Spectroscopy Studies to Determine the Mechanism of Copper Oxide Nanoparticle Uptake by Sweetpotato Roots during Postharvest Treatment.
    Bonilla-Bird NJ; Paez A; Reyes A; Hernandez-Viezcas JA; Li C; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Technol; 2018 Sep; 52(17):9954-9963. PubMed ID: 30063828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.