BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30078521)

  • 1. The Effects of Stress Type, Vowel Identity, Baseline f
    Park Y; Stepp CE
    J Voice; 2019 Sep; 33(5):603-610. PubMed ID: 30078521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative Fundamental Frequency in Children With and Without Vocal Fold Nodules.
    Heller Murray ES; Segina RK; Woodnorth GH; Stepp CE
    J Speech Lang Hear Res; 2020 Feb; 63(2):361-371. PubMed ID: 32073342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vocal intensity and vowel type on cepstral analysis of voice.
    Awan SN; Giovinco A; Owens J
    J Voice; 2012 Sep; 26(5):670.e15-20. PubMed ID: 22480754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic measures of voice stability in young and old adults.
    Bier SD; Watson CI; McCann CM
    Logoped Phoniatr Vocol; 2017 Jul; 42(2):51-61. PubMed ID: 27009384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative Fundamental Frequency in Individuals with Globus Syndrome and Muscle Tension Dysphagia.
    Buckley DP; Vojtech JM; Stepp CE
    J Voice; 2024 May; 38(3):612-618. PubMed ID: 34823980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Voice Analysis of Young Turkish Speakers.
    Demirhan E; Unsal EM; Yilmaz C; Ertan E
    J Voice; 2016 May; 30(3):378.e21-5. PubMed ID: 26223964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source and Filter Acoustic Measures of Young, Middle-Aged and Elderly Adults for Application in Vowel Synthesis.
    Davatz GC; Yamasaki R; Hachiya A; Tsuji DH; Montagnoli AN
    J Voice; 2024 Mar; 38(2):253-263. PubMed ID: 34756498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phonetic context on relative fundamental frequency.
    Lien YA; Gattuccio CI; Stepp CE
    J Speech Lang Hear Res; 2014 Aug; 57(4):1259-67. PubMed ID: 24686466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Acoustic Analysis Measurements in the Evaluation of Patients With Different Laryngeal Diagnoses.
    Lopes LW; Batista Simões L; Delfino da Silva J; da Silva Evangelista D; da Nóbrega E Ugulino AC; Oliveira Costa Silva P; Jefferson Dias Vieira V
    J Voice; 2017 May; 31(3):382.e15-382.e26. PubMed ID: 27742492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Relative Fundamental Frequency Under Increased Cognitive Load in Individuals With Healthy Voices.
    Dahl KL; Stepp CE
    J Speech Lang Hear Res; 2021 Apr; 64(4):1189-1196. PubMed ID: 33788635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Adventitious Acute Vocal Trauma: Relative Fundamental Frequency and Listener Perception.
    Murray ES; Hands GL; Calabrese CR; Stepp CE
    J Voice; 2016 Mar; 30(2):177-85. PubMed ID: 26028369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Clinical Utility of Relative Fundamental Frequency as an Objective Measure of Vocal Hyperfunction.
    Roy N; Fetrow RA; Merrill RM; Dromey C
    J Speech Lang Hear Res; 2016 Oct; 59(5):1002-1017. PubMed ID: 27768175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship Between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults.
    McKenna VS; Heller Murray ES; Lien YS; Stepp CE
    J Speech Lang Hear Res; 2016 Dec; 59(6):1283-1294. PubMed ID: 27936279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Relative Fundamental Frequency Algorithms for Use With Neck-Surface Accelerometer Signals.
    Groll MD; Vojtech JM; Hablani S; Mehta DD; Buckley DP; Noordzij JP; Stepp CE
    J Voice; 2022 Mar; 36(2):156-169. PubMed ID: 32653267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative Fundamental Frequency Distinguishes Between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction.
    Heller Murray ES; Lien YS; Van Stan JH; Mehta DD; Hillman RE; Pieter Noordzij J; Stepp CE
    J Speech Lang Hear Res; 2017 Jun; 60(6):1507-1515. PubMed ID: 28595317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of objective voice measures of normal speaking voices.
    Leong K; Hawkshaw MJ; Dentchev D; Gupta R; Lurie D; Sataloff RT
    J Voice; 2013 Mar; 27(2):170-6. PubMed ID: 23280378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of voice relative fundamental frequency estimates derived from an accelerometer signal and low-pass filtered and unprocessed microphone signals.
    Lien YA; Stepp CE
    J Acoust Soc Am; 2014 May; 135(5):2977-85. PubMed ID: 24815277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic comparison of vowel sounds among adult females.
    Franca MC
    J Voice; 2012 Sep; 26(5):671.e9-17. PubMed ID: 22285451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Acoustic analysis of the normal voice in nonsmoking adults].
    Fernández Liesa R; Damborenea Tajada D; Rueda Gormedino P; García y García E; Leache Pueyo J; Campos del Alamo MA; Llorente Arenas E; Naya Gálvez MJ
    Acta Otorrinolaringol Esp; 1999 Mar; 50(2):134-41. PubMed ID: 10217688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.