These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30078521)

  • 41. Influence of vowel selection on determination of phonation threshold pressure.
    Plexico LW; Sandage MJ
    J Voice; 2012 Sep; 26(5):673.e7-12. PubMed ID: 22633330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perceptual and Acoustic Assessment of Strain Using Synthetically Modified Voice Samples.
    Park Y; Cádiz MD; Nagle KF; Stepp CE
    J Speech Lang Hear Res; 2020 Dec; 63(12):3897-3908. PubMed ID: 33151770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An examination of elicitation method on fundamental frequency and repeatability of average airflow measures in children age 4:0-5:11 years.
    Brehm SB; Weinrich BD; Sprouse DC; May SK; Hughes MR
    J Voice; 2012 Nov; 26(6):721-5. PubMed ID: 22795980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic changes related to laryngeal examination with a rigid telescope.
    Ng ML; Bailey RL
    Folia Phoniatr Logop; 2006; 58(5):353-62. PubMed ID: 16966836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.
    Kagan LS; Heaton JT
    J Voice; 2017 May; 31(3):384.e15-384.e23. PubMed ID: 27839705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Perceptual-Auditory and Acoustical Analysis of the Voices of Transgender Women.
    Schwarz K; Fontanari AMV; Costa AB; Soll BMB; da Silva DC; de Sá Villas-Bôas AP; Cielo CA; Bastilha GR; Ribeiro VV; Dorfman MEKY; Lobato MIR
    J Voice; 2018 Sep; 32(5):602-608. PubMed ID: 28965663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vocal fold kinematics and relative fundamental frequency as a function of obstruent type and speaker age.
    Park Y; Wang F; Díaz-Cádiz M; Vojtech JM; Groll MD; Stepp CE
    J Acoust Soc Am; 2021 Apr; 149(4):2189. PubMed ID: 33940922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vowel acoustics in adults with apraxia of speech.
    Jacks A; Mathes KA; Marquardt TP
    J Speech Lang Hear Res; 2010 Feb; 53(1):61-74. PubMed ID: 20008683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A phrase captures aerodynamic and acoustic data in healthy voice users and in patients with voice disorders.
    Grillo EU
    Logoped Phoniatr Vocol; 2020 Apr; 45(1):24-29. PubMed ID: 30514141
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of simultaneous perturbations of voice pitch and loudness feedback on voice F0 and amplitude control.
    Larson CR; Sun J; Hain TC
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2862-72. PubMed ID: 17550185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regional Variation in Fundamental Frequency of American English Vowels.
    Jacewicz E; Fox RA
    Phonetica; 2018; 75(4):273-309. PubMed ID: 29649804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship Between Laryngeal Signs and Symptoms, Acoustic Measures, and Quality of Life in Finnish Primary and Kindergarten School Teachers.
    Munier C; Brockmann-Bauser M; Laukkanen AM; Ilomäki I; Kankare E; Geneid A
    J Voice; 2020 Mar; 34(2):259-271. PubMed ID: 30691965
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perceptual integration of acoustic cues to laryngeal contrasts in Korean fricatives.
    Lee S; Katz J
    J Acoust Soc Am; 2016 Feb; 139(2):605-11. PubMed ID: 26936544
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perceptual evaluations of voice scatter in unison choir sounds.
    Ternström S
    J Voice; 1993 Jun; 7(2):129-35. PubMed ID: 8353626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustic changes in the production of lexical stress during Lombard speech.
    Arciuli J; Simpson BS; Vogel AP; Ballard KJ
    Lang Speech; 2014 Jun; 57(Pt 2):149-62. PubMed ID: 25102603
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of high precision F0 extraction algorithms for sustained vowels.
    Parsa V; Jamieson DG
    J Speech Lang Hear Res; 1999 Feb; 42(1):112-26. PubMed ID: 10025548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method.
    Vojtech JM; Segina RK; Buckley DP; Kolin KR; Tardif MC; Noordzij JP; Stepp CE
    J Acoust Soc Am; 2019 Nov; 146(5):3184. PubMed ID: 31795681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of body position on vocal tract acoustics: Acoustic pharyngometry and vowel formants.
    Vorperian HK; Kurtzweil SL; Fourakis M; Kent RD; Tillman KK; Austin D
    J Acoust Soc Am; 2015 Aug; 138(2):833-45. PubMed ID: 26328699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measuring voice under teachers' working circumstances: F0 and perturbation features in maximally sustained phonation.
    Rantala L; Määttä T; Vilkman E
    Folia Phoniatr Logop; 1997; 49(6):281-91. PubMed ID: 9415733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.