These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modeling gene regulation from paired expression and chromatin accessibility data. Duren Z; Chen X; Jiang R; Wang Y; Wong WH Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882 [TBL] [Abstract][Full Text] [Related]
3. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410 [TBL] [Abstract][Full Text] [Related]
4. The transcription factor GLI1 cooperates with the chromatin remodeler SMARCA2 to regulate chromatin accessibility at distal DNA regulatory elements. Safgren SL; Olson RLO; Vrabel AM; Almada LL; Marks DL; Hernandez-Alvarado N; Gaspar-Maia A; Fernandez-Zapico ME J Biol Chem; 2020 Jun; 295(26):8725-8735. PubMed ID: 32376693 [TBL] [Abstract][Full Text] [Related]
5. ATAC-seq reveals regional differences in enhancer accessibility during the establishment of spatial coordinates in the Bozek M; Cortini R; Storti AE; Unnerstall U; Gaul U; Gompel N Genome Res; 2019 May; 29(5):771-783. PubMed ID: 30962180 [TBL] [Abstract][Full Text] [Related]
6. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells. Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344 [TBL] [Abstract][Full Text] [Related]
7. Spatial organization of gene expression: the active chromatin hub. de Laat W; Grosveld F Chromosome Res; 2003; 11(5):447-59. PubMed ID: 12971721 [TBL] [Abstract][Full Text] [Related]
8. Temporal regulation of chromatin during myoblast differentiation. Harada A; Ohkawa Y; Imbalzano AN Semin Cell Dev Biol; 2017 Dec; 72():77-86. PubMed ID: 29079444 [TBL] [Abstract][Full Text] [Related]
9. Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers. Young RS; Kumar Y; Bickmore WA; Taylor MS Genome Biol; 2017 Dec; 18(1):242. PubMed ID: 29284524 [TBL] [Abstract][Full Text] [Related]
10. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Inoue F; Kircher M; Martin B; Cooper GM; Witten DM; McManus MT; Ahituv N; Shendure J Genome Res; 2017 Jan; 27(1):38-52. PubMed ID: 27831498 [TBL] [Abstract][Full Text] [Related]
11. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963 [TBL] [Abstract][Full Text] [Related]
12. The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation. Long T; Bhattacharyya T; Repele A; Naylor M; Nooti S; Krueger S; Manu G3 (Bethesda); 2024 Feb; 14(2):. PubMed ID: 38124496 [TBL] [Abstract][Full Text] [Related]
13. A cis-regulatory map of the Drosophila genome. Nègre N; Brown CD; Ma L; Bristow CA; Miller SW; Wagner U; Kheradpour P; Eaton ML; Loriaux P; Sealfon R; Li Z; Ishii H; Spokony RF; Chen J; Hwang L; Cheng C; Auburn RP; Davis MB; Domanus M; Shah PK; Morrison CA; Zieba J; Suchy S; Senderowicz L; Victorsen A; Bild NA; Grundstad AJ; Hanley D; MacAlpine DM; Mannervik M; Venken K; Bellen H; White R; Gerstein M; Russell S; Grossman RL; Ren B; Posakony JW; Kellis M; White KP Nature; 2011 Mar; 471(7339):527-31. PubMed ID: 21430782 [TBL] [Abstract][Full Text] [Related]
15. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bozek M; Gompel N Bioessays; 2020 Apr; 42(4):e1900188. PubMed ID: 32142172 [TBL] [Abstract][Full Text] [Related]
16. Genomic methods in profiling DNA accessibility and factor localization. Klein DC; Hainer SJ Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829 [TBL] [Abstract][Full Text] [Related]
17. The landscape of accessible chromatin in mammalian preimplantation embryos. Wu J; Huang B; Chen H; Yin Q; Liu Y; Xiang Y; Zhang B; Liu B; Wang Q; Xia W; Li W; Li Y; Ma J; Peng X; Zheng H; Ming J; Zhang W; Zhang J; Tian G; Xu F; Chang Z; Na J; Yang X; Xie W Nature; 2016 Jun; 534(7609):652-7. PubMed ID: 27309802 [TBL] [Abstract][Full Text] [Related]
18. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Frank CL; Liu F; Wijayatunge R; Song L; Biegler MT; Yang MG; Vockley CM; Safi A; Gersbach CA; Crawford GE; West AE Nat Neurosci; 2015 May; 18(5):647-56. PubMed ID: 25849986 [TBL] [Abstract][Full Text] [Related]
19. The cis-Regulatory Atlas of the Mouse Immune System. Yoshida H; Lareau CA; Ramirez RN; Rose SA; Maier B; Wroblewska A; Desland F; Chudnovskiy A; Mortha A; Dominguez C; Tellier J; Kim E; Dwyer D; Shinton S; Nabekura T; Qi Y; Yu B; Robinette M; Kim KW; Wagers A; Rhoads A; Nutt SL; Brown BD; Mostafavi S; Buenrostro JD; Benoist C; Cell; 2019 Feb; 176(4):897-912.e20. PubMed ID: 30686579 [TBL] [Abstract][Full Text] [Related]
20. CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. Su G; Wang W; Chen J; Liu M; Zheng J; Guo D; Bi J; Zhao Z; Shi J; Zhang L; Lu W J Biol Chem; 2021; 296():100413. PubMed ID: 33581110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]