BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30078993)

  • 1. Insights into conformational changes in AlkD bound to DNA with a yatakemycin adduct from computational simulations.
    Silvestrov P; Cisneros GA
    Theor Chem Acc; 2018 Jun; 137():. PubMed ID: 30078993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).
    Hašplová K; Hudecová A; Magdolénová Z; Bjøras M; Gálová E; Miadoková E; Dušinská M
    Toxicol Lett; 2012 Jan; 208(1):76-81. PubMed ID: 22019460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity and repair of DNA adducts produced by the natural product yatakemycin.
    Mullins EA; Shi R; Eichman BF
    Nat Chem Biol; 2017 Sep; 13(9):1002-1008. PubMed ID: 28759018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.
    Lenz SA; Wetmore SD
    Biochemistry; 2016 Feb; 55(5):798-808. PubMed ID: 26765542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.
    Lenz SA; Kellie JL; Wetmore SD
    J Phys Chem B; 2015 Dec; 119(51):15601-12. PubMed ID: 26618397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
    Alseth I; Rognes T; Lindbäck T; Solberg I; Robertsen K; Kristiansen KI; Mainieri D; Lillehagen L; Kolstø AB; Bjørås M
    Mol Microbiol; 2006 Mar; 59(5):1602-9. PubMed ID: 16468998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites.
    Mullins EA; Dorival J; Tang GL; Boger DL; Eichman BF
    Nat Commun; 2021 Nov; 12(1):6942. PubMed ID: 34836957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.
    Kathuria P; Sharma P; Abendong MN; Wetmore SD
    Biochemistry; 2015 Apr; 54(15):2414-28. PubMed ID: 25761009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA.
    Morikawa K; Shirakawa M
    Mutat Res; 2000 Aug; 460(3-4):257-75. PubMed ID: 10946233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect O6-guanine alkylation on DNA flexibility studied by comparative molecular dynamics simulations.
    Kara M; Drsata T; Lankas F; Zacharias M
    Biopolymers; 2015 Jan; 103(1):23-32. PubMed ID: 25130987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.