BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30079082)

  • 1. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment.
    De Simone F; Artaxo P; Bencardino M; Cinnirella S; Carbone F; D'Amore F; Dommergue A; Feng XB; Gencarelli CN; Hedgecock IM; Landis MS; Sprovieri F; Suzuki N; Wängberg I; Pirrone N
    Atmos Chem Phys; 2017; 17():1881-1899. PubMed ID: 30079082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.
    Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE
    Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation.
    Gencarelli CN; De Simone F; Hedgecock IM; Sprovieri F; Pirrone N
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4095-109. PubMed ID: 24170496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories.
    Simone FD; Gencarelli CN; Hedgecock IM; Pirrone N
    Environ Sci Technol; 2016 May; 50(10):5154-62. PubMed ID: 27120197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large contribution of biomass burning emissions to ozone throughout the global remote troposphere.
    Bourgeois I; Peischl J; Neuman JA; Brown SS; Thompson CR; Aikin KC; Allen HM; Angot H; Apel EC; Baublitz CB; Brewer JF; Campuzano-Jost P; Commane R; Crounse JD; Daube BC; DiGangi JP; Diskin GS; Emmons LK; Fiore AM; Gkatzelis GI; Hills A; Hornbrook RS; Huey LG; Jimenez JL; Kim M; Lacey F; McKain K; Murray LT; Nault BA; Parrish DD; Ray E; Sweeney C; Tanner D; Wofsy SC; Ryerson TB
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34930838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model.
    Ballesteros-González K; Sullivan AP; Morales-Betancourt R
    Sci Total Environ; 2020 Oct; 739():139755. PubMed ID: 32758934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention.
    Wang F; Outridge PM; Feng X; Meng B; Heimbürger-Boavida LE; Mason RP
    Sci Total Environ; 2019 Jul; 674():58-70. PubMed ID: 31003088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arctic atmospheric mercury: Sources and changes.
    Dastoor A; Wilson SJ; Travnikov O; Ryjkov A; Angot H; Christensen JH; Steenhuisen F; Muntean M
    Sci Total Environ; 2022 Sep; 839():156213. PubMed ID: 35623517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury pollution in China: implications on the implementation of the Minamata Convention.
    Feng X; Li P; Fu X; Wang X; Zhang H; Lin CJ
    Environ Sci Process Impacts; 2022 May; 24(5):634-648. PubMed ID: 35485580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial estimates of mercury emissions to the atmosphere from global biomass burning.
    Friedli HR; Arellano AF; Cinnirella S; Pirrone N
    Environ Sci Technol; 2009 May; 43(10):3507-13. PubMed ID: 19544847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particulate-phase and gaseous elemental mercury emissions during biomass combustion: controlling factors and correlation with particulate matter emissions.
    Obrist D; Moosmüller H; Schürmann R; Chen LW; Kreidenweis SM
    Environ Sci Technol; 2008 Feb; 42(3):721-7. PubMed ID: 18323093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deforestation as an Anthropogenic Driver of Mercury Pollution.
    Feinberg A; Jiskra M; Borrelli P; Biswakarma J; Selin NE
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38328901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001-2017.
    Shi Y; Zhao A; Matsunaga T; Yamaguchi Y; Zang S; Li Z; Yu T; Gu X
    Sci Total Environ; 2019 Feb; 653():638-648. PubMed ID: 30759589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of deposition and bioaccumulation in the Great Lakes region to policy and other large-scale drivers of mercury emissions.
    Perlinger JA; Urban NR; Giang A; Selin NE; Hendricks AN; Zhang H; Kumar A; Wu S; Gagnon VS; Gorman HS; Norman ES
    Environ Sci Process Impacts; 2018 Jan; 20(1):195-209. PubMed ID: 29360116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
    Zhang Y; Jacob DJ; Horowitz HM; Chen L; Amos HM; Krabbenhoft DP; Slemr F; St Louis VL; Sunderland EM
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):526-31. PubMed ID: 26729866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.
    Muntean M; Janssens-Maenhout G; Song S; Selin NE; Olivier JG; Guizzardi D; Maas R; Dentener F
    Sci Total Environ; 2014 Oct; 494-495():337-50. PubMed ID: 25068706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution atmospheric mercury emission from open biomass burning in China: Integration of localized emission factors and multi-source finer resolution remote sensing data.
    Xu Z; Wang Z; Niu X; Tao J; Fan M; Wang B; Zhang M; Zhang X
    Environ Int; 2023 Aug; 178():108102. PubMed ID: 37572495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition.
    Saiz-Lopez A; Sitkiewicz SP; Roca-Sanjuán D; Oliva-Enrich JM; Dávalos JZ; Notario R; Jiskra M; Xu Y; Wang F; Thackray CP; Sunderland EM; Jacob DJ; Travnikov O; Cuevas CA; Acuña AU; Rivero D; Plane JMC; Kinnison DE; Sonke JE
    Nat Commun; 2018 Nov; 9(1):4796. PubMed ID: 30442890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon.
    Richter L; Amouroux D; Tessier E; Fostier AH
    Chemosphere; 2023 Oct; 339():139779. PubMed ID: 37567261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model.
    Feinberg A; Dlamini T; Jiskra M; Shah V; Selin NE
    Environ Sci Process Impacts; 2022 Sep; 24(9):1303-1318. PubMed ID: 35485923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.