These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30079275)

  • 1. Structure of capillary suspensions and their versatile applications in the creation of smart materials.
    Hauf K; Koos E
    MRS Commun; 2018 Jun; 8(2):332-342. PubMed ID: 30079275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary suspensions: Particle networks formed through the capillary force.
    Koos E
    Curr Opin Colloid Interface Sci; 2014 Dec; 19(6):575-584. PubMed ID: 25729316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions.
    Bitsch B; Braunschweig B; Willenbacher N
    Langmuir; 2016 Feb; 32(6):1440-9. PubMed ID: 26807658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges.
    Yang J; Park HS; Kim J; Mok J; Kim T; Shin EK; Kwak C; Lim S; Kim CB; Park JS; Na HB; Choi D; Lee J
    Langmuir; 2020 Aug; 36(32):9424-9435. PubMed ID: 32659098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lightweight Porous Glass Composite Materials Based on Capillary Suspensions.
    Hartung K; Benner C; Willenbacher N; Koos E
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Functional Properties in Porous Electroceramics through Additive Manufacturing of Capillary Suspensions.
    Menne D; Lemos da Silva L; Rotan M; Glaum J; Hinterstein M; Willenbacher N
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3027-3037. PubMed ID: 34985253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.
    Hauf K; Riazi K; Willenbacher N; Koos E
    Colloid Polym Sci; 2017 Oct; 295(10):1773-1785. PubMed ID: 29503494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary Structured Suspensions from In Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media.
    Dunstan TS; Das AAK; Starck P; Stoyanov SD; Paunov VN
    Langmuir; 2018 Jan; 34(1):442-452. PubMed ID: 29239178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces.
    Georgiev MT; Danov KD; Kralchevsky PA; Gurkov TD; Krusteva DP; Arnaudov LN; Stoyanov SD; Pelan EG
    J Colloid Interface Sci; 2018 Mar; 513():515-526. PubMed ID: 29179092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction.
    Domenech T; Velankar SS
    Soft Matter; 2015 Feb; 11(8):1500-16. PubMed ID: 25582822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive, printable pastes from capillary suspensions.
    Schneider M; Koos E; Willenbacher N
    Sci Rep; 2016 Aug; 6():31367. PubMed ID: 27506726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
    Bossler F; Koos E
    Langmuir; 2016 Feb; 32(6):1489-501. PubMed ID: 26807651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Porous Materials with Unique Mechanical Properties from Smart Capillary Suspensions.
    Dittmann J; Maurath J; Bitsch B; Willenbacher N
    Adv Mater; 2016 Feb; 28(8):1689-96. PubMed ID: 26677099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restructuring and aging in a capillary suspension.
    Koos E; Kannowade W; Willenbacher N
    Rheol Acta; 2014 Dec; 53(12):947-957. PubMed ID: 25729113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Inter-Particle Distances on the Rheological Properties of Cementitious Suspensions.
    Rajadurai RS; Kang ST
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary forces in suspension rheology.
    Koos E; Willenbacher N
    Science; 2011 Feb; 331(6019):897-900. PubMed ID: 21330542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Responsive Capillary Suspensions.
    Das AAK; Dunstan TS; Stoyanov SD; Starck P; Paunov VN
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44152-44160. PubMed ID: 29210563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Bleeding of Cement Suspensions on Their Rheological Properties.
    von Bronk T; Haist M; Lohaus L
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Pickering stabilization and bulk gelation for the preparation and properties of solid silica foams.
    Lesov I; Tcholakova S; Kovadjieva M; Saison T; Lamblet M; Denkov N
    J Colloid Interface Sci; 2017 Oct; 504():48-57. PubMed ID: 28527299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.