BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 30079634)

  • 21. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality.
    Ghosh RM; Jolley MA; Mascio CE; Chen JM; Fuller S; Rome JJ; Silvestro E; Whitehead KK
    3D Print Med; 2022 Apr; 8(1):11. PubMed ID: 35445896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.
    Shinbane JS; Saxon LA
    J Cardiovasc Comput Tomogr; 2018; 12(1):16-27. PubMed ID: 29198733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Various Applications of 3D Printing in Cardiovascular Diseases.
    El Sabbagh A; Eleid MF; Al-Hijji M; Anavekar NS; Holmes DR; Nkomo VT; Oderich GS; Cassivi SD; Said SM; Rihal CS; Matsumoto JM; Foley TA
    Curr Cardiol Rep; 2018 May; 20(6):47. PubMed ID: 29749577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects.
    White SC; Sedler J; Jones TW; Seckeler M
    Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging 3D technologies and applications within congenital heart disease: teach, predict, plan and guide.
    Salavitabar A; Figueroa CA; Lu JC; Owens ST; Axelrod DM; Zampi JD
    Future Cardiol; 2020 Nov; 16(6):695-709. PubMed ID: 32628520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models.
    Seckeler MD; Boe BA; Barber BJ; Berman DP; Armstrong AK
    Cardiol Young; 2021 Sep; 31(9):1407-1411. PubMed ID: 33597057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First printed 3D heart model based on cardiac magnetic resonance imaging data in Slovakia.
    Olejnik P; Juskanic D; Patrovic L; Halaj M
    Bratisl Lek Listy; 2018; 119(12):781-784. PubMed ID: 30686018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing and modeling of congenital heart defects: A technical review.
    Townsend K; Pietila T
    Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiothoracic Applications of 3-dimensional Printing.
    Giannopoulos AA; Steigner ML; George E; Barile M; Hunsaker AR; Rybicki FJ; Mitsouras D
    J Thorac Imaging; 2016 Sep; 31(5):253-72. PubMed ID: 27149367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease.
    Smith ML; McGuinness J; O'Reilly MK; Nolke L; Murray JG; Jones JFX
    Ir J Med Sci; 2017 Aug; 186(3):753-756. PubMed ID: 28124282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.
    Loke YH; Harahsheh AS; Krieger A; Olivieri LJ
    BMC Med Educ; 2017 Mar; 17(1):54. PubMed ID: 28284205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
    Abudayyeh I; Gordon B; Ansari MM; Jutzy K; Stoletniy L; Hilliard A
    J Interv Cardiol; 2018 Jun; 31(3):375-383. PubMed ID: 28948646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use.
    Perens G; Chyu J; McHenry K; Yoshida T; Finn JP
    World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease.
    Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ
    Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions?
    Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS
    Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printing in Modern Cardiology.
    Celi S; Gasparotti E; Capellini K; Vignali E; Fanni BM; Ali LA; Cantinotti M; Murzi M; Berti S; Santoro G; Positano V
    Curr Pharm Des; 2021; 27(16):1918-1930. PubMed ID: 32568014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.