These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30079986)

  • 1. Flexible Anion Microbatteries: Towards Construction of a Hybrid Battery-Capacitor Device.
    Silambarasan K; Joseph J
    ChemSusChem; 2018 Sep; 11(18):3081-3086. PubMed ID: 30079986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes.
    Yu S; Sankaran KJ; Korneychuk S; Verbeeck J; Haenen K; Jiang X; Yang N
    Nanoscale; 2019 Oct; 11(38):17939-17946. PubMed ID: 31553006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer Structure Engineering of MXene-Based Capacitor-Type Electrode for Hybrid Micro-Supercapacitor toward Battery-Level Energy Density.
    Cheng W; Fu J; Hu H; Ho D
    Adv Sci (Weinh); 2021 Aug; 8(16):e2100775. PubMed ID: 34137521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)
    Shi C; Sun J; Pang Y; Liu Y; Huang B; Liu BT
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):462-469. PubMed ID: 34509728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance.
    Gao C; Huang J; Xiao Y; Zhang G; Dai C; Li Z; Zhao Y; Jiang L; Qu L
    Nat Commun; 2021 May; 12(1):2647. PubMed ID: 33976170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Graphene Rechargeable Sodium Battery.
    Wang F; Liu Z; Zhang P; Li H; Sheng W; Zhang T; Jordan R; Wu Y; Zhuang X; Feng X
    Small; 2017 Dec; 13(47):. PubMed ID: 29076650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
    Liu J; Wang J; Ku Z; Wang H; Chen S; Zhang L; Lin J; Shen ZX
    ACS Nano; 2016 Jan; 10(1):1007-16. PubMed ID: 26593375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K
    Dong S; Li Z; Xing Z; Wu X; Ji X; Zhang X
    ACS Appl Mater Interfaces; 2018 May; 10(18):15542-15547. PubMed ID: 29683638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond.
    Dou Q; Wu N; Yuan H; Shin KH; Tang Y; Mitlin D; Park HS
    Chem Soc Rev; 2021 Jun; 50(12):6734-6789. PubMed ID: 33955977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.
    Zheng JS; Zhang L; Shellikeri A; Cao W; Wu Q; Zheng JP
    Sci Rep; 2017 Feb; 7():41910. PubMed ID: 28169329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Performance of Sb
    Hu X; Chen F; Wang S; Ru Q; Chu B; Wei C; Shi Y; Ye Z; Chu Y; Hou X; Sun L
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9144-9148. PubMed ID: 30741528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance.
    Li M; Pan F; Choo ES; Lv Y; Chen Y; Xue J
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6972-81. PubMed ID: 26926985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride.
    Boruah BD; Mathieson A; Wen B; Jo C; Deschler F; De Volder M
    Nano Lett; 2020 Aug; 20(8):5967-5974. PubMed ID: 32589038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors.
    Jin J; Geng X; Chen Q; Ren TL
    Nanomicro Lett; 2022 Feb; 14(1):64. PubMed ID: 35199258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application.
    Guo Q; Liu J; Bai C; Chen N; Qu L
    ACS Nano; 2021 Oct; 15(10):16533-16541. PubMed ID: 34636546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.