BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30080192)

  • 21. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
    Lee M; Shim HJ; Choi C; Kim DH
    Nano Lett; 2019 May; 19(5):2741-2749. PubMed ID: 31002760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable long-term chronic brain mapping at the single-neuron level.
    Fu TM; Hong G; Zhou T; Schuhmann TG; Viveros RD; Lieber CM
    Nat Methods; 2016 Oct; 13(10):875-82. PubMed ID: 27571550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Multimodal Multi-Shank Fluorescence Neural Probe for Cell-Type-Specific Electrophysiology in Multiple Regions across a Neural Circuit.
    Chou N; Shin H; Kim K; Chae U; Jang M; Jeong UJ; Hwang KS; Yi B; Lee SE; Woo J; Cho Y; Lee C; Baker BJ; Oh SJ; Nam MH; Choi N; Cho IJ
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103564. PubMed ID: 34796701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids.
    Le Floch P; Li Q; Lin Z; Zhao S; Liu R; Tasnim K; Jiang H; Liu J
    Adv Mater; 2022 Mar; 34(11):e2106829. PubMed ID: 35014735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity.
    Wu M; Yao K; Huang N; Li H; Zhou J; Shi R; Li J; Huang X; Li J; Jia H; Gao Z; Wong TH; Li D; Hou S; Liu Y; Zhang S; Song E; Yu J; Yu X
    Adv Sci (Weinh); 2023 May; 10(14):e2300504. PubMed ID: 36825679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.
    Guan S; Tian H; Yang Y; Liu M; Ding J; Wang J; Fang Y
    Nat Protoc; 2023 Jun; 18(6):1712-1744. PubMed ID: 37248393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemically functionalized probes for cell-type-specific targeting and recording in the brain.
    Zhang A; Zwang TJ; Lieber CM
    Sci Adv; 2023 Dec; 9(48):eadk1050. PubMed ID: 38019917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ferromagnetic Flexible Electronics for Brain-Wide Selective Neural Recording.
    Liu Y; Chen X; Liang Y; Song H; Yu P; Guan S; Liu Z; Yang A; Tang M; Zhou Y; Zheng Y; Yang Z; Jiang L; He J; Tan N; Xu B; Lin X
    Adv Mater; 2023 Feb; 35(6):e2208251. PubMed ID: 36451587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays.
    Panuccio G; Colombi I; Chiappalone M
    J Vis Exp; 2018 May; (135):. PubMed ID: 29863681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A protocol to investigate neural coupling of brain oscillations in rodents using in vivo electrophysiological recordings.
    Wang C; Stratton PG; Sah P; Marek R
    STAR Protoc; 2023 Sep; 4(3):102414. PubMed ID: 37436903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel environmental chamber for neuronal network multisite recordings.
    Biffi E; Regalia G; Ghezzi D; De Ceglia R; Menegon A; Ferrigno G; Fiore GB; Pedrocchi A
    Biotechnol Bioeng; 2012 Oct; 109(10):2553-66. PubMed ID: 22510865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleanroom strategies for micro- and nano-fabricating flexible implantable neural electronics.
    Walton F; Cerezo-Sanchez M; McGlynn E; Das R; Heidari H
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210009. PubMed ID: 35658678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex Vivo Whole Nerve Electrophysiology Setup, Action Potential Recording, and Data Analyses in a Rodent Model.
    Sun S; Delgado J; Behzadian N; Yeomans D; Anderson TA
    Curr Protoc Neurosci; 2020 Sep; 93(1):e99. PubMed ID: 32663369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tracking neural activity from the same cells during the entire adult life of mice.
    Zhao S; Tang X; Tian W; Partarrieu S; Liu R; Shen H; Lee J; Guo S; Lin Z; Liu J
    Nat Neurosci; 2023 Apr; 26(4):696-710. PubMed ID: 36804648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implantation of Neuropixels probes for chronic recording of neuronal activity in freely behaving mice and rats.
    van Daal RJJ; Aydin Ç; Michon F; Aarts AAA; Kraft M; Kloosterman F; Haesler S
    Nat Protoc; 2021 Jul; 16(7):3322-3347. PubMed ID: 34108732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New approaches for CMOS-based devices for large-scale neural recording.
    Ruther P; Paul O
    Curr Opin Neurobiol; 2015 Jun; 32():31-7. PubMed ID: 25463562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible fiber-based optoelectronics for neural interfaces.
    Park S; Loke G; Fink Y; Anikeeva P
    Chem Soc Rev; 2019 Mar; 48(6):1826-1852. PubMed ID: 30815657
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.