BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30080413)

  • 1. Quantitative N-Terminal Footprinting of Pathogenic Mycobacteria Reveals Differential Protein Acetylation.
    Thompson CR; Champion MM; Champion PA
    J Proteome Res; 2018 Sep; 17(9):3246-3258. PubMed ID: 30080413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in
    Collars OA; Jones BS; Hu DD; Weaver SD; Sherman TA; Champion MM; Champion PA
    mBio; 2023 Oct; 14(5):e0098723. PubMed ID: 37772840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
    Xie L; Wang X; Zeng J; Zhou M; Duan X; Li Q; Zhang Z; Luo H; Pang L; Li W; Liao G; Yu X; Li Y; Huang H; Xie J
    Int J Biochem Cell Biol; 2015 Feb; 59():193-202. PubMed ID: 25456444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostasis of N-α-terminal acetylation of EsxA correlates with virulence in Mycobacterium marinum.
    Mba Medie F; Champion MM; Williams EA; Champion PA
    Infect Immun; 2014 Nov; 82(11):4572-86. PubMed ID: 25135684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition of the type VII secretion system membrane complex.
    Houben EN; Bestebroer J; Ummels R; Wilson L; Piersma SR; Jiménez CR; Ottenhoff TH; Luirink J; Bitter W
    Mol Microbiol; 2012 Oct; 86(2):472-84. PubMed ID: 22925462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An N-acetyltransferase required for EsxA N-terminal protein acetylation and virulence in Mycobacterium marinum.
    Collars OA; Jones BS; Hu DD; Weaver SD; Champion MM; Champion PA
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N
    Birhanu AG; Yimer SA; Holm-Hansen C; Norheim G; Aseffa A; Abebe M; Tønjum T
    J Proteome Res; 2017 Nov; 16(11):4045-4059. PubMed ID: 28920697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research.
    Bell C; Smith GT; Sweredoski MJ; Hess S
    J Proteome Res; 2012 Jan; 11(1):119-30. PubMed ID: 22053987
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Aguilera J; Karki CB; Li L; Vazquez Reyes S; Estevao I; Grajeda BI; Zhang Q; Arico CD; Ouellet H; Sun J
    J Biol Chem; 2020 Apr; 295(17):5785-5794. PubMed ID: 32169899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First acetyl-proteome profiling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance.
    Li L; Wang W; Zhang R; Xu J; Wang R; Wang L; Zhao X; Li J
    Vet Microbiol; 2018 Nov; 226():1-8. PubMed ID: 30389038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14.
    Ouidir T; Jarnier F; Cosette P; Jouenne T; Hardouin J
    J Proteomics; 2015 Jan; 114():214-25. PubMed ID: 25464366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Global Acetylome of the Human Pathogen
    Jers C; Ravikumar V; Lezyk M; Sultan A; Sjöling Å; Wai SN; Mijakovic I
    Front Cell Infect Microbiol; 2017; 7():537. PubMed ID: 29376036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for top-down characterization of the Mycobacterium marinum secretome.
    Zhao Y; Sun L; Champion MM; Knierman MD; Dovichi NJ
    Anal Chem; 2014 May; 86(10):4873-8. PubMed ID: 24725189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved N(α)-acetylated peptide enrichment following dimethyl labeling and SCX.
    Chen SH; Chen CR; Chen SH; Li DT; Hsu JL
    J Proteome Res; 2013 Jul; 12(7):3277-87. PubMed ID: 23745983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis.
    Rison SCG; Mattow J; Jungblut PR; Stoker NG
    Microbiology (Reading); 2007 Feb; 153(Pt 2):521-528. PubMed ID: 17259624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-tuberculous Mycobacterium species causing mycobacteriosis in farmed aquatic animals of South Africa.
    Gcebe N; Michel AL; Hlokwe TM
    BMC Microbiol; 2018 Apr; 18(1):32. PubMed ID: 29653505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
    Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM
    Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction.
    Okkels LM; Müller EC; Schmid M; Rosenkrands I; Kaufmann SH; Andersen P; Jungblut PR
    Proteomics; 2004 Oct; 4(10):2954-60. PubMed ID: 15378760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Mycobacterium vanbaalenii as a model organism to study drug transporters of Mycobacterium tuberculosis, Mycobacterium marinum and Mycobacterium ulcerans: homology analysis of M. tuberculosis drug transporters among mycobacterial species.
    Gupta AK; Katoch VM; Chauhan DS; Lavania M
    Infect Genet Evol; 2012 Jun; 12(4):853-6. PubMed ID: 22127144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.