BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30080413)

  • 21. PhoPR Positively Regulates
    Feng L; Chen S; Hu Y
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Quantitative proteomic analysis of mkl gene function in Mycobacterium marinum using iTRAQ].
    Shi X; Zhao C; Niu C; Gao Q
    Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1496-1503. PubMed ID: 29738222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Lysine Acetylation in Mycobacterium abscessus Using LC-MS/MS after Immunoprecipitation.
    Guo J; Wang C; Han Y; Liu Z; Wu T; Liu Y; Liu Y; Tan Y; Cai X; Cao Y; Wang B; Zhang B; Liu C; Tan S; Zhang T
    J Proteome Res; 2016 Aug; 15(8):2567-78. PubMed ID: 27323652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.
    Xie L; Wang G; Yu Z; Zhou M; Li Q; Huang H; Xie J
    J Proteome Res; 2016 Apr; 15(4):1379-85. PubMed ID: 26903315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SILProNAQ: A Convenient Approach for Proteome-Wide Analysis of Protein N-Termini and N-Terminal Acetylation Quantitation.
    Bienvenut WV; Giglione C; Meinnel T
    Methods Mol Biol; 2017; 1574():17-34. PubMed ID: 28315241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GntR family regulators of the pathogen of fish tuberculosis Mycobacterium marinum.
    Ji L; Xie J
    Biochem Biophys Res Commun; 2011 Jul; 410(4):780-5. PubMed ID: 21703231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modified immunohistological staining allows detection of Ziehl-Neelsen-negative Mycobacterium tuberculosis organisms and their precise localization in human tissue.
    Ulrichs T; Lefmann M; Reich M; Morawietz L; Roth A; Brinkmann V; Kosmiadi GA; Seiler P; Aichele P; Hahn H; Krenn V; Göbel UB; Kaufmann SH
    J Pathol; 2005 Apr; 205(5):633-40. PubMed ID: 15776475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses.
    Linster E; Wirtz M
    J Exp Bot; 2018 Aug; 69(19):4555-4568. PubMed ID: 29945174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets.
    Schilling B; Meyer JG; Wei L; Ott M; Verdin E
    Methods Mol Biol; 2019; 1983():3-16. PubMed ID: 31087289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Pup-Proteasome System of Mycobacteria.
    Bode NJ; Darwin KH
    Microbiol Spectr; 2014 Oct; 2(5):. PubMed ID: 26104367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis.
    Mehaffy C; Belisle JT; Dobos KM
    Tuberculosis (Edinb); 2019 Mar; 115():1-13. PubMed ID: 30948163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Arginine Phosphorylation in Mycolicibacterium smegmatis.
    Ogbonna EC; Anderson HR; Schmitz KR
    Microbiol Spectr; 2022 Oct; 10(5):e0204222. PubMed ID: 36214676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NaCl triggers the CRP-dependent increase of cAMP in Mycobacterium tuberculosis.
    Rebollo-Ramirez S; Larrouy-Maumus G
    Tuberculosis (Edinb); 2019 May; 116():8-16. PubMed ID: 31153521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis.
    Rachman H; Strong M; Ulrichs T; Grode L; Schuchhardt J; Mollenkopf H; Kosmiadi GA; Eisenberg D; Kaufmann SH
    Infect Immun; 2006 Feb; 74(2):1233-42. PubMed ID: 16428773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm.
    Parra J; Marcoux J; Poncin I; Canaan S; Herrmann JL; Nigou J; Burlet-Schiltz O; Rivière M
    Sci Rep; 2017 Mar; 7():43682. PubMed ID: 28272507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of homologous aminopeptidase PepN from pathogenic and non-pathogenic mycobacteria reveals divergent traits.
    Sharma N; Aggarwal S; Kumar S; Sharma R; Choudhury K; Singh N; Jayaswal P; Goel R; Wajid S; Yadav AK; Atmakuri K
    PLoS One; 2019; 14(4):e0215123. PubMed ID: 30969995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical characterization of phosphoserine phosphatase SerB2 from Mycobacterium marinum.
    Pierson E; Wouters J
    Biochem Biophys Res Commun; 2020 Oct; 530(4):739-744. PubMed ID: 32782143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive analysis of the lysine acetylome and its potential regulatory roles in the virulence of Streptococcus pneumoniae.
    Liu YT; Pan Y; Lai F; Yin XF; Ge R; He QY; Sun X
    J Proteomics; 2018 Mar; 176():46-55. PubMed ID: 29386122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-terminomics identifies widespread endoproteolysis and novel methionine excision in a genome-reduced bacterial pathogen.
    Berry IJ; Jarocki VM; Tacchi JL; Raymond BBA; Widjaja M; Padula MP; Djordjevic SP
    Sci Rep; 2017 Sep; 7(1):11063. PubMed ID: 28894154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Optimization and evaluation of protein C-terminal peptide enrichment strategy based on arginine cleavage].
    Zhao X; Hu H; Zhao W; Liu P; Tan M
    Se Pu; 2022 Jan; 40(1):17-27. PubMed ID: 34985212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.