These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30080553)

  • 1. Phase separation technology based on ultrasonic standing waves: A review.
    Luo X; Cao J; Gong H; Yan H; He L
    Ultrason Sonochem; 2018 Nov; 48():287-298. PubMed ID: 30080553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of acoustic parameters for ultrasonic separation of emulsions with different physical properties.
    Luo X; Gong H; Yin H; He Z; He L
    Ultrason Sonochem; 2020 Nov; 68():105221. PubMed ID: 32590332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of suspensions and emulsions via ultrasonic standing waves - a review.
    Trujillo FJ; Juliano P; Barbosa-Cánovas G; Knoerzer K
    Ultrason Sonochem; 2014 Nov; 21(6):2151-64. PubMed ID: 24629579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic cavitation for agri-food applications: Mechanism of action, design of new systems, challenges and strategies for scale-up.
    Zhu X; Das RS; Bhavya ML; Garcia-Vaquero M; Tiwari BK
    Ultrason Sonochem; 2024 May; 105():106850. PubMed ID: 38520893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective aggregation by ultrasonic standing waves through gas nuclei on the particle surface.
    Chen Y; Zheng H; Truong VNT; Xie G; Liu Q
    Ultrason Sonochem; 2020 May; 63():104924. PubMed ID: 31945565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.
    Johansson L; Singh T; Leong T; Mawson R; McArthur S; Manasseh R; Juliano P
    Ultrason Sonochem; 2016 Jan; 28():346-356. PubMed ID: 26384918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances.
    Wang S; Wang X; You F; Xiao H
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of ultrasound in food and bioprocessing.
    Ashokkumar M
    Ultrason Sonochem; 2015 Jul; 25():17-23. PubMed ID: 25219872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves.
    Luo X; Cao J; Yin H; Yan H; He L
    Ultrason Sonochem; 2018 Mar; 41():319-326. PubMed ID: 29137758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustofluidics 7: The acoustic radiation force on small particles.
    Bruus H
    Lab Chip; 2012 Mar; 12(6):1014-21. PubMed ID: 22349937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves.
    Trujillo FJ; Eberhardt S; Möller D; Dual J; Knoerzer K
    Ultrason Sonochem; 2013 Mar; 20(2):655-66. PubMed ID: 23058229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in high frequency ultrasound separation of particulates from biomass.
    Juliano P; Augustin MA; Xu XQ; Mawson R; Knoerzer K
    Ultrason Sonochem; 2017 Mar; 35(Pt B):577-590. PubMed ID: 27217305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of acoustic cavitation in water and molten aluminum alloy.
    Komarov S; Oda K; Ishiwata Y; Dezhkunov N
    Ultrason Sonochem; 2013 Mar; 20(2):754-61. PubMed ID: 23141190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.