These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30080553)

  • 21. Acoustofluidics 15: streaming with sound waves interacting with solid particles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of ultrasonic standing waves to enhance optical particle sizing equipment.
    Holwill IL
    Ultrasonics; 2000 Mar; 38(1-8):650-3. PubMed ID: 10829745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application and development of ultrasound in industrial crystallization.
    Xiang L; Fu M; Wang T; Wang D; Xv H; Miao W; Le T; Zhang L; Hu J
    Ultrason Sonochem; 2024 Dec; 111():107062. PubMed ID: 39293095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chip integrated strategies for acoustic separation and manipulation of cells and particles.
    Laurell T; Petersson F; Nilsson A
    Chem Soc Rev; 2007 Mar; 36(3):492-506. PubMed ID: 17325788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on ultrasonic techniques for enhancing the separation process of membrane.
    Zhang R; Huang Y; Sun C; Xiaozhen L; Bentian X; Wang Z
    Ultrason Sonochem; 2019 Jul; 55():341-347. PubMed ID: 30852155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes.
    Radziuk D; Möhwald H
    Phys Chem Chem Phys; 2016 Jan; 18(1):21-46. PubMed ID: 26435267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of travelling wave components in standing surface acoustic wave (SSAW) systems.
    Devendran C; Albrecht T; Brenker J; Alan T; Neild A
    Lab Chip; 2016 Sep; 16(19):3756-3766. PubMed ID: 27722363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A power ultrasonic technology for deliquoring.
    Gallego-Juárez JA; Elvira-Segura L; Rodríguez-Corral G
    Ultrasonics; 2003 Jun; 41(4):255-9. PubMed ID: 12782256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intensification of ultrasonic-assisted crude oil demulsification based on acoustic field distribution data.
    Pedrotti MF; Enders MSP; Pereira LSF; Mesko MF; Flores EMM; Bizzi CA
    Ultrason Sonochem; 2018 Jan; 40(Pt B):53-59. PubMed ID: 28433504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.
    Luo X; Cao J; He L; Wang H; Yan H; Qin Y
    Ultrason Sonochem; 2017 Jan; 34():839-846. PubMed ID: 27773311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of fine particles at different frequencies and HRTs using acoustic standing waves.
    Ahn KH; Ahn J; Kim IT; Kang S; Kim S; Chu KH; Ko KB
    Environ Technol; 2015; 36(1-4):302-9. PubMed ID: 25514131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.
    Castro A; Hoyos M
    Ultrasonics; 2016 Mar; 66():166-171. PubMed ID: 26705604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic-field devices for the ultrasonic manipulation of microparticles.
    Drinkwater BW
    Lab Chip; 2016 Jul; 16(13):2360-75. PubMed ID: 27256513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic cavitation mechanism: a nonlinear model.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2012 Mar; 19(2):217-20. PubMed ID: 21802973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.