These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30080589)

  • 1. Cavitation and acoustic streaming generated by different sonotrode tips.
    Fang Y; Yamamoto T; Komarov S
    Ultrason Sonochem; 2018 Nov; 48():79-87. PubMed ID: 30080589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation.
    Yamamoto T; Kubo K; Komarov SV
    Ultrason Sonochem; 2021 Mar; 71():105381. PubMed ID: 33157358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting.
    Lebon GSB; Salloum-Abou-Jaoude G; Eskin D; Tzanakis I; Pericleous K; Jarry P
    Ultrason Sonochem; 2019 Jun; 54():171-182. PubMed ID: 30755390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.
    Tian Y; Liu Z; Li X; Zhang L; Li R; Jiang R; Dong F
    Ultrason Sonochem; 2018 May; 43():29-37. PubMed ID: 29555286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation.
    Beckwith C; Djambazov G; Pericleous K; Tonry C
    Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of flow behaviour and velocity induced by ultrasound using particle image velocimetry (PIV): Effect of fluid rheology, acoustic intensity and transducer tip size.
    O'Sullivan JJ; Espinoza CJU; Mihailova O; Alberini F
    Ultrason Sonochem; 2018 Nov; 48():218-230. PubMed ID: 30080545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
    Hallez L; Touyeras F; Hihn JY; Bailly Y
    Ultrason Sonochem; 2016 Mar; 29():420-7. PubMed ID: 26585023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comparison of ultrasonic effects in different metal melts.
    Kang J; Zhang X; Wang S; Ma J; Huang T
    Ultrasonics; 2015 Mar; 57():11-7. PubMed ID: 25435493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the cavitation development and acoustic spectrum in various liquids.
    Tzanakis I; Lebon GS; Eskin DG; Pericleous KA
    Ultrason Sonochem; 2017 Jan; 34():651-662. PubMed ID: 27773292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of cavitation generated by an ultrasonic dental scaler tip vibrating in a compressible liquid.
    Manmi KMA; Wu WB; Vyas N; Smith WR; Wang QX; Walmsley AD
    Ultrason Sonochem; 2020 May; 63():104963. PubMed ID: 31986331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field.
    Ma X; Huang B; Wang G; Zhang M
    Ultrason Sonochem; 2017 Jan; 34():164-172. PubMed ID: 27773232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Acoustic Streaming in Formation of Unsteady Flow in Billet Sump during Ultrasonic DC Casting of Aluminum Alloys.
    Komarov S; Yamamoto T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.
    Loh BG; Hyun S; Ro PI; Kleinstreuer C
    J Acoust Soc Am; 2002 Feb; 111(2):875-83. PubMed ID: 11863189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency.
    Zhang C; Guo X; Royon L; Brunet P
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32580511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition.
    Rahimi M; Movahedirad S; Shahhosseini S
    Ultrason Sonochem; 2017 Mar; 35(Pt A):359-374. PubMed ID: 27771264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A viable method to predict acoustic streaming in presence of cavitation.
    Louisnard O
    Ultrason Sonochem; 2017 Mar; 35(Pt A):518-524. PubMed ID: 27666196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.