These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30080965)

  • 1. Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy.
    Xia W; Yang Y; Meng Q; Deng Z; Gong M; Wang J; Wang D; Zhu Y; Sun L; Xu F; Li J; Xin HL
    ACS Nano; 2018 Aug; 12(8):7866-7874. PubMed ID: 30080965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.
    Mel AA; Tessier PY; Buffiere M; Gautron E; Ding J; Du K; Choi CH; Konstantinidis S; Snyders R; Bittencourt C; Molina-Luna L
    Small; 2016 Jun; 12(21):2885-92. PubMed ID: 27061060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale.
    Han L; Meng Q; Wang D; Zhu Y; Wang J; Du X; Stach EA; Xin HL
    Nat Commun; 2016 Dec; 7():13335. PubMed ID: 27928998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles.
    Wang CM; Genc A; Cheng H; Pullan L; Baer DR; Bruemmer SM
    Sci Rep; 2014 Jan; 4():3683. PubMed ID: 24418778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy.
    Lagrow AP; Alyami NM; Lloyd DC; Bakr OM; Boyes ED; Gai PL
    J Microsc; 2018 Feb; 269(2):161-167. PubMed ID: 28850665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction.
    Peng P; Lin XM; Liu Y; Filatov AS; Li D; Stamenkovic VR; Yang D; Prakapenka VB; Lei A; Shevchenko EV
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24715-24724. PubMed ID: 29953206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct in Situ TEM Observation of Modification of Oxidation by the Injected Vacancies for Ni-4Al Alloy Using a Microfabricated Nanopost.
    Wang CM; Schreiber DK; Olszta MJ; Baer DR; Bruemmer SM
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17272-7. PubMed ID: 26186484
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Sainju R; Rathnayake D; Tan H; Bollas G; Dongare AM; Suib SL; Zhu Y
    ACS Nano; 2022 Apr; 16(4):6468-6479. PubMed ID: 35413193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.
    Susman MD; Feldman Y; Bendikov TA; Vaskevich A; Rubinstein I
    Nanoscale; 2017 Aug; 9(34):12573-12589. PubMed ID: 28820220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy.
    Zhang D; Jin C; Li ZY; Zhang Z; Li J
    Sci Bull (Beijing); 2017 Jun; 62(11):775-778. PubMed ID: 36659273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology Engineering in Multicomponent Hollow Metal Chalcogenide Nanoparticles.
    Shen B; Huang L; Shen J; Hu X; Zhong P; Zheng CY; Wolverton C; Mirkin CA
    ACS Nano; 2023 Mar; 17(5):4642-4649. PubMed ID: 36800560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope.
    Albrecht W; Van Aert S; Bals S
    Acc Chem Res; 2021 Mar; 54(5):1189-1199. PubMed ID: 33566587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically synthesized hollow nanostructures in iron oxides.
    Khurshid H; Li W; Tzitzios V; Hadjipanayis GC
    Nanotechnology; 2011 Jul; 22(26):265605. PubMed ID: 21576787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes.
    Skorikov A; Albrecht W; Bladt E; Xie X; van der Hoeven JES; van Blaaderen A; Van Aert S; Bals S
    ACS Nano; 2019 Nov; 13(11):13421-13429. PubMed ID: 31626527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.
    Niu KY; Park J; Zheng H; Alivisatos AP
    Nano Lett; 2013; 13(11):5715-9. PubMed ID: 24131312
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Sharna S; Bahri M; Bouillet C; Rouchon V; Lambert A; Gay AS; Chiche D; Ersen O
    Nanoscale; 2021 Jun; 13(21):9747-9756. PubMed ID: 34019612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.
    LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations.
    Nilsson S; Albinsson D; Antosiewicz TJ; Fritzsche J; Langhammer C
    Nanoscale; 2019 Nov; 11(43):20725-20733. PubMed ID: 31650143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.