These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30080974)

  • 1. Dual-Laser Tetra-Polarization FRET (4polFRET) for Site-Selective Control of Homo-FRET in Hetero-FRET Systems on the Cell Surface: The Homo-FRET Gate.
    Bene L; Bagdány M; Ungvári T; Damjanovich L
    Anal Chem; 2018 Sep; 90(17):10159-10170. PubMed ID: 30080974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection.
    Bene L; Gogolák P; Ungvári T; Bagdány M; Nagy I; Damjanovich L
    Biochim Biophys Acta; 2016 Feb; 1863(2):322-34. PubMed ID: 26657258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-laser homo-FRET on the cell surface.
    Bene L; Ungvári T; Fedor R; Nagy I; Damjanovich L
    Biochim Biophys Acta; 2015 May; 1853(5):1096-112. PubMed ID: 25668611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization and inter-chromophore distance of Cph1 phytochrome from Synechocystis, as monitored by fluorescence homo and hetero energy transfer.
    Otto H; Lamparter T; Borucki B; Hughes J; Heyn MP
    Biochemistry; 2003 May; 42(19):5885-95. PubMed ID: 12741847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation study on the influence of energy migration and relative interaction strengths of homo- and hetero-FRET on the net FRET efficiency.
    Rout J; Swain BC; Sakshi ; Biswas S; Das AK; Tripathy U
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117599. PubMed ID: 31751800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-laser polarization FRET (polFRET) on the cell surface.
    Bene L; Ungvári T; Fedor R; Damjanovich L
    Biochim Biophys Acta; 2014 Dec; 1843(12):3047-64. PubMed ID: 25241341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding effects on energy transfer efficiency and donor-acceptor distance of hetero-FRET sensors using time-resolved fluorescence.
    Schwarz J; J Leopold H; Leighton R; Miller RC; Aplin CP; Boersma AJ; Heikal AA; Sheets ED
    Methods Appl Fluoresc; 2019 Feb; 7(2):025002. PubMed ID: 30690439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal of a new method for measuring Förster Resonance Energy Transfer (FRET) rapidly, quantitatively and non-destructively.
    Helm PJ
    Int J Mol Sci; 2012 Sep; 13(10):12367-82. PubMed ID: 23202903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homo-FRET enhanced ratiometric fluorescence strategy for exonuclease III activity detection.
    Zhang X; Bai Y; Jiang Y; Wang N; Yang F; Zhan L; Huang C
    Anal Methods; 2021 Mar; 13(12):1489-1494. PubMed ID: 33690735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checkpoint for helicity conservation in fluorescence at the nanoscale: Energy and helicity transfer (hFRET) from a rotating donor dipole.
    Bene L; Bagdány M; Damjanovich L
    Biophys Chem; 2018 Aug; 239():38-53. PubMed ID: 29807308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins.
    Akrap N; Seidel T; Barisas BG
    Anal Biochem; 2010 Jul; 402(1):105-6. PubMed ID: 20347671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.
    Squire A; Verveer PJ; Rocks O; Bastiaens PI
    J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of homo-FRET in quantum dot-dye heterostructured assembly.
    Saha S; Majhi D; Bhattacharyya K; Preeyanka N; Datta A; Sarkar M
    Phys Chem Chem Phys; 2018 Apr; 20(14):9523-9535. PubMed ID: 29570192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer.
    Teijeiro-Gonzalez Y; Crnjar A; Beavil AJ; Beavil RL; Nedbal J; Le Marois A; Molteni C; Suhling K
    Biophys J; 2021 Jan; 120(2):254-269. PubMed ID: 33345902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements.
    Babu Manoharan G; Guzmán C; Najumudeen AK; Abankwa D
    Eur J Cell Biol; 2023 Jun; 102(2):151314. PubMed ID: 37058825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.