BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30081040)

  • 1. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 3. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system.
    Wang Y; Zhang ZT; Seo SO; Choi K; Lu T; Jin YS; Blaschek HP
    J Biotechnol; 2015 Apr; 200():1-5. PubMed ID: 25680931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.
    Hong W; Zhang J; Cui G; Wang L; Wang Y
    ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1.
    Jiménez A; Hoff B; Revuelta JL
    N Biotechnol; 2020 Jul; 57():29-33. PubMed ID: 32194155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 9. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.
    Tang X; Lowder LG; Zhang T; Malzahn AA; Zheng X; Voytas DF; Zhong Z; Chen Y; Ren Q; Li Q; Kirkland ER; Zhang Y; Qi Y
    Nat Plants; 2017 Feb; 3():17018. PubMed ID: 28211909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example.
    Zhang ZT; Jiménez-Bonilla P; Seo SO; Lu T; Jin YS; Blaschek HP; Wang Y
    Methods Mol Biol; 2018; 1772():297-325. PubMed ID: 29754236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    ACS Synth Biol; 2016 Jul; 5(7):721-32. PubMed ID: 27115041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing.
    Ding D; Chen K; Chen Y; Li H; Xie K
    Mol Plant; 2018 Apr; 11(4):542-552. PubMed ID: 29462720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized CRISPR-Cpf1 system for genome editing in zebrafish.
    Fernandez JP; Vejnar CE; Giraldez AJ; Rouet R; Moreno-Mateos MA
    Methods; 2018 Nov; 150():11-18. PubMed ID: 29964176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cpf1-mediated DNA-free plant genome editing.
    Kim H; Kim ST; Ryu J; Kang BC; Kim JS; Kim SG
    Nat Commun; 2017 Feb; 8():14406. PubMed ID: 28205546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.