These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30081144)

  • 1. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery.
    Kumar NN; Lochhead JJ; Pizzo ME; Nehra G; Boroumand S; Greene G; Thorne RG
    J Control Release; 2018 Sep; 286():467-484. PubMed ID: 30081144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.
    Lochhead JJ; Wolak DJ; Pizzo ME; Thorne RG
    J Cereb Blood Flow Metab; 2015 Mar; 35(3):371-81. PubMed ID: 25492117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery.
    Pizzo ME; Wolak DJ; Kumar NN; Brunette E; Brunnquell CL; Hannocks MJ; Abbott NJ; Meyerand ME; Sorokin L; Stanimirovic DB; Thorne RG
    J Physiol; 2018 Feb; 596(3):445-475. PubMed ID: 29023798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of insulin in trigeminal nerve and brain after intranasal administration.
    Lochhead JJ; Kellohen KL; Ronaldson PT; Davis TP
    Sci Rep; 2019 Feb; 9(1):2621. PubMed ID: 30796294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve.
    Yu XC; Yang JJ; Jin BH; Xu HL; Zhang HY; Xiao J; Lu CT; Zhao YZ; Yang W
    J Control Release; 2017 Jul; 258():22-33. PubMed ID: 28476614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging.
    Wolak DJ; Pizzo ME; Thorne RG
    J Control Release; 2015 Jan; 197():78-86. PubMed ID: 25449807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharmacol Exp Ther; 2009 Jan; 328(1):312-20. PubMed ID: 18945930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of interferon-beta to the monkey nervous system following intranasal administration.
    Thorne RG; Hanson LR; Ross TM; Tung D; Frey WH
    Neuroscience; 2008 Mar; 152(3):785-97. PubMed ID: 18304744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharm Sci; 2009 Jul; 98(7):2501-15. PubMed ID: 19025760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of perivascular spaces or tissues in the facial intradermal brain-targeted delivery.
    Yang W; Jin BH; Chen YJ; Cao C; Zhu JZ; Zhao YZ; Yu XC; Li FZ
    Drug Deliv; 2019 Dec; 26(1):393-403. PubMed ID: 30929532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration.
    Lochhead JJ; Davis TP
    Pharmaceutics; 2019 Nov; 11(11):. PubMed ID: 31726721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures.
    Johnson NJ; Hanson LR; Frey WH
    Mol Pharm; 2010 Jun; 7(3):884-93. PubMed ID: 20420446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model.
    Charlton ST; Whetstone J; Fayinka ST; Read KD; Illum L; Davis SS
    Pharm Res; 2008 Jul; 25(7):1531-43. PubMed ID: 18293062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intranasal delivery: circumventing the iron curtain to treat neurological disorders.
    Jiang Y; Li Y; Liu X
    Expert Opin Drug Deliv; 2015; 12(11):1717-25. PubMed ID: 26206202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles.
    Kanazawa T; Akiyama F; Kakizaki S; Takashima Y; Seta Y
    Biomaterials; 2013 Dec; 34(36):9220-6. PubMed ID: 23992922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intranasal administration of CNS therapeutics to awake mice.
    Hanson LR; Fine JM; Svitak AL; Faltesek KA
    J Vis Exp; 2013 Apr; (74):. PubMed ID: 23608783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn.
    Cooper PR; Ciambrone GJ; Kliwinski CM; Maze E; Johnson L; Li Q; Feng Y; Hornby PJ
    Brain Res; 2013 Oct; 1534():13-21. PubMed ID: 23978455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.