These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30081253)

  • 1. Molecular cloning and sequence variance analysis of the TEOSINTE BRANCHED1 (TB1) gene in bermudagrass [Cynodon dactylon (L.) Pers].
    Zhang B; Liu J
    J Plant Physiol; 2018 Oct; 229():142-150. PubMed ID: 30081253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.).
    Zhang B; Xiao X; Zong J; Chen J; Li J; Guo H; Liu J
    Plant Physiol Biochem; 2017 Dec; 121():31-37. PubMed ID: 29080425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tillering in the sugary1 sweet corn is maintained by overriding the teosinte branched1 repressive signal.
    Kebrom TH; Brutnell TP
    Plant Signal Behav; 2015; 10(12):e1078954. PubMed ID: 26399727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ideal crop plant architecture is mediated by
    Dong Z; Li W; Unger-Wallace E; Yang J; Vollbrecht E; Chuck G
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8656-E8664. PubMed ID: 28973898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of the metabolome and transcriptome reveals the mechanism of resistance to low nitrogen supply in wild bermudagrass (Cynodon dactylon (L.) Pers.) roots.
    Li D; Liu J; Zong J; Guo H; Li J; Wang J; Wang H; Li L; Chen J
    BMC Plant Biol; 2021 Oct; 21(1):480. PubMed ID: 34674655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance.
    Hu Z; Huang X; Amombo E; Liu A; Fan J; Bi A; Ji K; Xin H; Chen L; Fu J
    Plant Sci; 2020 May; 294():110432. PubMed ID: 32234227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural variation in teosinte at the domestication locus teosinte branched1 (tb1).
    Vann L; Kono T; Pyhäjärvi T; Hufford MB; Ross-Ibarra J
    PeerJ; 2015; 3():e900. PubMed ID: 25909039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte.
    Hubbard L; McSteen P; Doebley J; Hake S
    Genetics; 2002 Dec; 162(4):1927-35. PubMed ID: 12524360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development.
    Lewis JM; Mackintosh CA; Shin S; Gilding E; Kravchenko S; Baldridge G; Zeyen R; Muehlbauer GJ
    Plant Cell Rep; 2008 Jul; 27(7):1217-25. PubMed ID: 18392625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1.
    Finlayson SA
    Plant Cell Physiol; 2007 May; 48(5):667-77. PubMed ID: 17452340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotypic and phenotypic evaluation of off-type grasses in hybrid Bermudagrass [
    Reasor EH; Brosnan JT; Staton ME; Lane T; Trigiano RN; Wadl PA; Conner JA; Schwartz BM
    Hereditas; 2018; 155():8. PubMed ID: 28827983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers.
    Zheng Y; Xu S; Liu J; Zhao Y; Liu J
    PLoS One; 2017; 12(5):e0177508. PubMed ID: 28493962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of apical dominance in maize.
    Doebley J; Stec A; Hubbard L
    Nature; 1997 Apr; 386(6624):485-8. PubMed ID: 9087405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of
    Prakash NR; Chhabra R; Zunjare RU; Muthusamy V; Hossain F
    3 Biotech; 2020 Feb; 10(2):77. PubMed ID: 32058540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of zinc tolerance and accumulation in eight cultivars of bermudagrass (Cynodon spp.): implications for zinc phytoremediation.
    Zhang B; Sun Q; Chen Z; Shu F; Chen J
    Biometals; 2023 Dec; 36(6):1377-1390. PubMed ID: 37530928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork.
    Guan JC; Koch KE; Suzuki M; Wu S; Latshaw S; Petruff T; Goulet C; Klee HJ; McCarty DR
    Plant Physiol; 2012 Nov; 160(3):1303-17. PubMed ID: 22961131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression.
    Dong Z; Xiao Y; Govindarajulu R; Feil R; Siddoway ML; Nielsen T; Lunn JE; Hawkins J; Whipple C; Chuck G
    Nat Commun; 2019 Aug; 10(1):3810. PubMed ID: 31444327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic and phenotypic variability of interspecific hybrid bermudagrasses (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) used on golf course putting greens.
    Reasor EH; Brosnan JT; Trigiano RN; Elsner JE; Henry GM; Schwartz BM
    Planta; 2016 Oct; 244(4):761-73. PubMed ID: 27448290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbiased phosphoproteome profiling uncovers novel phosphoproteins and phosphorylation motifs in bermudagrass stolons.
    Zhang B; Chen J; Zong J; Yan X; Liu J
    Plant Physiol Biochem; 2019 Nov; 144():92-99. PubMed ID: 31561202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell RNA-sequencing provides new insights into the cell-specific expression patterns and transcriptional regulation of photosynthetic genes in bermudagrass leaf blades.
    Zhang B; Ma Z; Guo H; Chen S; Liu J
    Plant Physiol Biochem; 2024 Aug; 213():108857. PubMed ID: 38905728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.