These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30081261)

  • 21. Wetting behavior of multi-walled carbon nanotube nanofluids.
    Karthikeyan A; Coulombe S; Kietzig AM
    Nanotechnology; 2017 Mar; 28(10):105706. PubMed ID: 28106004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant-enhanced spreading: Experimental achievements and possible mechanisms.
    Kovalchuk NM; Trybala A; Arjmandi-Tash O; Starov V
    Adv Colloid Interface Sci; 2016 Jul; 233():155-160. PubMed ID: 26282600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spreading of nanofluids driven by the structural disjoining pressure gradient.
    Chengara A; Nikolov AD; Wasan DT; Trokhymchuk A; Henderson D
    J Colloid Interface Sci; 2004 Dec; 280(1):192-201. PubMed ID: 15476790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids.
    Lu G; Wang XD; Duan YY
    Adv Colloid Interface Sci; 2016 Oct; 236():43-62. PubMed ID: 27521099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural disjoining pressure induced solid particle removal from solid substrates using nanofluids.
    Lim S; Wasan D
    J Colloid Interface Sci; 2017 Aug; 500():96-104. PubMed ID: 28402846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper Quantum Dot/Polyacrylamide Composite Nanospheres: Spreading on Quartz Flake Surfaces and Displacing Crude Oil in Microchannel Chips.
    Ma X; Yang H; Liu X; Zeng L; Li X; Zheng L; Yang Y; Cao L; Meng W; Zheng J
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces.
    Shen Y; Couzis A; Koplik J; Maldarelli C; Tomassone MS
    Langmuir; 2005 Dec; 21(26):12160-70. PubMed ID: 16342988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of self-assembled surfactant structure on the spreading of oil on flat solid surfaces.
    Li B; Somasundaran P; Patra P
    Adv Colloid Interface Sci; 2014 Aug; 210():72-7. PubMed ID: 24815088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilising nanofluids in saline environments.
    Al-Anssari S; Arif M; Wang S; Barifcani A; Iglauer S
    J Colloid Interface Sci; 2017 Dec; 508():222-229. PubMed ID: 28841480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spreading of Surfactant Solutions over Hydrophobic Substrates.
    Starov VM; Kosvintsev SR; Velarde MG
    J Colloid Interface Sci; 2000 Jul; 227(1):185-190. PubMed ID: 10860610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.
    Liu C; Lee H; Chang YH; Feng SP
    J Colloid Interface Sci; 2016 May; 469():17-24. PubMed ID: 26866885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces.
    Kim HJ; Kim DE
    Nanoscale; 2012 Jul; 4(13):3937-44. PubMed ID: 22628124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media.
    Zhang H; Ramakrishnan TS; Nikolov A; Wasan D
    J Colloid Interface Sci; 2018 Feb; 511():48-56. PubMed ID: 28972895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial displacement of nanoparticles by surfactant molecules in emulsions.
    Vashisth C; Whitby CP; Fornasiero D; Ralston J
    J Colloid Interface Sci; 2010 Sep; 349(2):537-43. PubMed ID: 20573356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic Investigation of Nanoparticles' Role in Mobilizing Trapped Oil Droplets in Porous Media.
    Xu K; Zhu P; Huh C; Balhoff MT
    Langmuir; 2015 Dec; 31(51):13673-9. PubMed ID: 26671612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant- and Aqueous-Foam-Driven Oil Extraction from Micropatterned Surfaces.
    Mensire R; Wexler JS; Guibaud A; Lorenceau E; Stone HA
    Langmuir; 2016 Dec; 32(49):13149-13158. PubMed ID: 27951705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Interaction of Nanoparticles and Surfactants on the Spreading Dynamics of Sessile Droplets.
    Harikrishnan AR; Dhar P; Gedupudi S; Das SK
    Langmuir; 2017 Oct; 33(43):12180-12192. PubMed ID: 28982242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.