These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30081374)
1. Attention capture is temporally stable: Evidence from mixed-model correlations. Weichselbaum H; Huber-Huber C; Ansorge U Cognition; 2018 Nov; 180():206-224. PubMed ID: 30081374 [TBL] [Abstract][Full Text] [Related]
2. The Time Course of Target Template Activation Processes during Preparation for Visual Search. Grubert A; Eimer M J Neurosci; 2018 Oct; 38(44):9527-9538. PubMed ID: 30242053 [TBL] [Abstract][Full Text] [Related]
3. Target-nontarget similarity decreases search efficiency and increases stimulus-driven control in visual search. Barras C; Kerzel D Atten Percept Psychophys; 2017 Oct; 79(7):2037-2043. PubMed ID: 28681179 [TBL] [Abstract][Full Text] [Related]
4. Search efficiency is not sufficient: The nature of search modulates stimulus-driven attention. Jung K; Han SW; Min Y Atten Percept Psychophys; 2019 Jan; 81(1):61-70. PubMed ID: 30276609 [TBL] [Abstract][Full Text] [Related]
6. Priming of Pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Lamy D; Antebi C; Aviani N; Carmel T Vision Res; 2008 Jan; 48(1):30-41. PubMed ID: 18054983 [TBL] [Abstract][Full Text] [Related]
7. Brain structures involved in visual search in the presence and absence of color singletons. Talsma D; Coe B; Munoz DP; Theeuwes J J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291 [TBL] [Abstract][Full Text] [Related]
8. Evidence for attentional capture by a surprising color singleton in visual search. Horstmann G Psychol Sci; 2002 Nov; 13(6):499-505. PubMed ID: 12430832 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological evidence of the capture of visual attention. Hickey C; McDonald JJ; Theeuwes J J Cogn Neurosci; 2006 Apr; 18(4):604-13. PubMed ID: 16768363 [TBL] [Abstract][Full Text] [Related]
12. There is more to trial history than priming in attentional capture experiments. Goller F; Ansorge U Atten Percept Psychophys; 2015 Jul; 77(5):1574-84. PubMed ID: 25832193 [TBL] [Abstract][Full Text] [Related]
13. Attentional control during visual search: the effect of irrelevant singletons. Theeuwes J; Burger R J Exp Psychol Hum Percept Perform; 1998 Oct; 24(5):1342-53. PubMed ID: 9778827 [TBL] [Abstract][Full Text] [Related]
14. Attentional capture does not depend on feature similarity, but on target-nontarget relations. Becker SI; Folk CL; Remington RW Psychol Sci; 2013 May; 24(5):634-47. PubMed ID: 23558547 [TBL] [Abstract][Full Text] [Related]
15. Visual search for feature singletons: multiple mechanisms produce sequence effects in visual search. Rangelov D; Müller HJ; Zehetleitner M J Vis; 2013 Aug; 13(3):. PubMed ID: 23912066 [TBL] [Abstract][Full Text] [Related]
16. Towards a resolution of the attentional-capture debate. Carmel T; Lamy D J Exp Psychol Hum Percept Perform; 2015 Dec; 41(6):1772-82. PubMed ID: 26280266 [TBL] [Abstract][Full Text] [Related]
17. Oculomotor Capture by New and Unannounced Color Singletons during Visual Search. Retell JD; Venini D; Becker SI Atten Percept Psychophys; 2015 Jul; 77(5):1529-43. PubMed ID: 25832190 [TBL] [Abstract][Full Text] [Related]
18. Contingent attentional capture across multiple feature dimensions in a temporal search task. Ito M; Kawahara JI Acta Psychol (Amst); 2016 Jan; 163():107-13. PubMed ID: 26637932 [TBL] [Abstract][Full Text] [Related]
19. Feature specificity in attentional capture by size and color. Harris AM; Remington RW; Becker SI J Vis; 2013 May; 13(3):. PubMed ID: 23650630 [TBL] [Abstract][Full Text] [Related]