These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30081511)

  • 1. A Novel Semi-Supervised Feature Extraction Method and Its Application in Automotive Assembly Fault Diagnosis Based on Vision Sensor Data.
    Zeng X; Yin SB; Guo Y; Lin JR; Zhu JG
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing defect diagnosis based on semi-supervised kernel Local Fisher Discriminant Analysis using pseudo labels.
    Tao X; Ren C; Li Q; Guo W; Liu R; He Q; Zou J
    ISA Trans; 2021 Apr; 110():394-412. PubMed ID: 33069372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis.
    Li C; Zhou J
    ISA Trans; 2014 Sep; 53(5):1534-43. PubMed ID: 24981891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data.
    Chen X; Wang Z; Zhang Z; Jia L; Qin Y
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Feature Extraction-Based Quadratic Discriminant Analysis for Industrial Process Fault Classification and Diagnosis.
    Li H; Jia M; Mao Z
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes.
    Zheng J; Wang H; Song Z; Ge Z
    ISA Trans; 2019 Sep; 92():109-117. PubMed ID: 30824112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new fault diagnosis approach for analog circuits based on spectrum image and feature weighted kernel Fisher discriminant analysis.
    He W; He Y; Zhang C
    Rev Sci Instrum; 2018 Jul; 89(7):074702. PubMed ID: 30068103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples.
    Wei M; Liu Y; Zhang T; Wang Z; Zhu J
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bearing Fault Diagnosis Based on Randomized Fisher Discriminant Analysis.
    Ye H; Wu P; Huo Y; Wang X; He Y; Zhang X; Gao J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Semi-supervised Gaussian Mixture Variational Autoencoder method for few-shot fine-grained fault diagnosis.
    Zhao Z; Xu Y; Zhang J; Zhao R; Chen Z; Jiao Y
    Neural Netw; 2024 Oct; 178():106482. PubMed ID: 38945116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Supervised Deep Kernel Active Learning for Material Removal Rate Prediction in Chemical Mechanical Planarization.
    Lv C; Huang J; Zhang M; Wang H; Zhang T
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network.
    Ye Q; Liu C
    Comput Intell Neurosci; 2022; 2022():1679836. PubMed ID: 35785063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism.
    Liu S; Zhou F; Tang S; Hu X; Wang C; Wang T
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fault Diagnosis of Complex Processes Using Sparse Kernel Local Fisher Discriminant Analysis.
    Zhong K; Han M; Qiu T; Han B
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1581-1591. PubMed ID: 31265419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent Fault Detection and Classification Based on Hybrid Deep Learning Methods for Hardware-in-the-Loop Test of Automotive Software Systems.
    Abboush M; Bamal D; Knieke C; Rausch A
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised learning for ordinal Kernel Discriminant Analysis.
    Pérez-Ortiz M; Gutiérrez PA; Carbonero-Ruz M; Hervás-Martínez C
    Neural Netw; 2016 Dec; 84():57-66. PubMed ID: 27639724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection.
    Onel M; Kieslich CA; Guzman YA; Pistikopoulos EN
    Int Symp Process Syst Eng; 2018; 44():2077-2082. PubMed ID: 30534633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine.
    She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.
    Zhang H; Tian X; Deng X; Cao Y
    ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bearing Fault Diagnosis Based on the Switchable Normalization SSGAN with 1-D Representation of Vibration Signals as Input.
    Zhao D; Liu F; Meng H
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.