These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30081541)

  • 1. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography.
    Esposito D; Andreozzi E; Fratini A; Gargiulo GD; Savino S; Niola V; Bifulco P
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography.
    Youn W; Kim J
    Med Biol Eng Comput; 2010 Nov; 48(11):1149-57. PubMed ID: 20524072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.
    Han H; Jo S; Kim J
    Med Biol Eng Comput; 2015 Jul; 53(7):577-88. PubMed ID: 25752771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode.
    Madeleine P; Jørgensen LV; Søgaard K; Arendt-Nielsen L; Sjøgaard G
    Eur J Appl Physiol; 2002 May; 87(1):28-37. PubMed ID: 12012073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis.
    Reza MF; Ikoma K; Chuma T; Mano Y
    J Neurosci Methods; 2005 Dec; 149(2):164-71. PubMed ID: 16026847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sensor mass and adipose tissue on the mechanomyography signal of elbow flexor muscles.
    Santos E; Fernandes Vara MF; Ranciaro M; Strasse W; Nunes Nogueira Neto G; Nohama P
    J Biomech; 2021 Jun; 122():110456. PubMed ID: 33962326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable MMG-Plus-One Armband: Evaluation of Normal Force on Mechanomyography (MMG) to Enhance Human-Machine Interfacing.
    Castillo CSM; Wilson S; Vaidyanathan R; Atashzar SF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():196-205. PubMed ID: 33290226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Breathing Muscle Performance During Singing Noninvasively Using Mechanomyography and Electromyography.
    Ramli MI; Hamzaid NA; Engkasan JP
    J Voice; 2020 Nov; 34(6):862-869. PubMed ID: 31300185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanomyogram and electromyogram analyses during isometric contraction in human masseter muscle.
    Ioi H; Kawakatsu M; Nakata S; Nakasima A; Counts AL
    Aust Orthod J; 2008 Nov; 24(2):116-20. PubMed ID: 19113076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.
    Ahamed NU; Sundaraj K; Alqahtani M; Altwijri O; Ali MA; Islam MA
    Technol Health Care; 2014; 22(4):505-13. PubMed ID: 25059255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optoelectronic muscle contraction sensor for prosthetic hand application.
    Sharma N; Prakash A; Sharma S
    Rev Sci Instrum; 2023 Mar; 94(3):035009. PubMed ID: 37012764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic characteristics between mechanomyogram and muscle force during twitch and tetanic contractions in rat skeletal muscles.
    Sato I; Yamamoto S; Kakimoto M; Fujii M; Honma K; Kumazaki S; Matsui M; Nakayama H; Kirihara S; Ran S; Hirohata S; Watanabe S
    J Electromyogr Kinesiol; 2022 Feb; 62():102627. PubMed ID: 34999536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG and MMG of synergists and antagonists during relaxation at three joint angles.
    Jaskólska A; Kisiel K; Brzenczek W; Jaskólski A
    Eur J Appl Physiol; 2003 Sep; 90(1-2):58-68. PubMed ID: 12811569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography.
    Blangsted AK; Sjøgaard G; Madeleine P; Olsen HB; Søgaard K
    J Electromyogr Kinesiol; 2005 Apr; 15(2):138-48. PubMed ID: 15664144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wireless Multi-Layered EMG/MMG/NIRS Sensor for Muscular Activity Evaluation.
    Kimoto A; Fujiyama H; Machida M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Coupled Piezoelectric Sensor for MMG-Based Human-Machine Interfaces.
    Szumilas M; Władziński M; Wildner K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy.
    Yoshitake Y; Ue H; Miyazaki M; Moritani T
    Eur J Appl Physiol; 2001 Mar; 84(3):174-9. PubMed ID: 11320632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach.
    Fukuhara S; Kawashima T; Oka H
    Sci Rep; 2021 Oct; 11(1):21208. PubMed ID: 34707172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing electro- and mechano-myographic muscle activation patterns in self-paced pediatric gait.
    Plewa K; Samadani A; Chau T
    J Electromyogr Kinesiol; 2017 Oct; 36():73-80. PubMed ID: 28753521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmenting Mechanomyography Measures of Muscle Activity Phases Using Inertial Data.
    Woodward RB; Stokes MJ; Shefelbine SJ; Vaidyanathan R
    Sci Rep; 2019 Apr; 9(1):5569. PubMed ID: 30944380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.