BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30081743)

  • 1. Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA.
    Millen AM; Samson JE; Tremblay DM; Magadán AH; Rousseau GM; Moineau S; Romero DA
    RNA Biol; 2019 Apr; 16(4):461-468. PubMed ID: 30081743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
    Millen AM; Horvath P; Boyaval P; Romero DA
    PLoS One; 2012; 7(12):e51663. PubMed ID: 23240053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primed CRISPR-Cas Adaptation and Impaired Phage Adsorption in Streptococcus mutans.
    Mosterd C; Moineau S
    mSphere; 2021 May; 6(3):. PubMed ID: 34011685
    [No Abstract]   [Full Text] [Related]  

  • 6. A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages.
    Eraclio G; Tremblay DM; Lacelle-Côté A; Labrie SJ; Fortina MG; Moineau S
    Appl Environ Microbiol; 2015 Dec; 81(24):8358-65. PubMed ID: 26407890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition.
    Kazlauskiene M; Tamulaitis G; Kostiuk G; Venclovas Č; Siksnys V
    Mol Cell; 2016 Apr; 62(2):295-306. PubMed ID: 27105119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
    Silas S; Lucas-Elio P; Jackson SA; Aroca-Crevillén A; Hansen LL; Fineran PC; Fire AZ; Sánchez-Amat A
    Elife; 2017 Aug; 6():. PubMed ID: 28826484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.
    Garneau JE; Dupuis MÈ; Villion M; Romero DA; Barrangou R; Boyaval P; Fremaux C; Horvath P; Magadán AH; Moineau S
    Nature; 2010 Nov; 468(7320):67-71. PubMed ID: 21048762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis.
    Hill C; Miller LA; Klaenhammer TR
    J Bacteriol; 1990 Nov; 172(11):6419-26. PubMed ID: 2121714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and genomic analysis of Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of Siphoviridae, with homology to Lactococcus lactis phages.
    Hoai TD; Nishiki I; Yoshida T
    Virus Res; 2016 Aug; 222():13-23. PubMed ID: 27234995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 15. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. lactis ME2.
    Durmaz E; Higgins DL; Klaenhammer TR
    J Bacteriol; 1992 Nov; 174(22):7463-9. PubMed ID: 1429469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating
    Lemay ML; Otto A; Maaß S; Plate K; Becher D; Moineau S
    Mol Cell Proteomics; 2019 Apr; 18(4):704-714. PubMed ID: 30679258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response.
    Heler R; Wright AV; Vucelja M; Doudna JA; Marraffini LA
    Cell Host Microbe; 2019 Feb; 25(2):242-249.e3. PubMed ID: 30709780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An origin of DNA replication from Lactococcus lactis bacteriophage c2.
    Waterfield NR; Lubbers MW; Polzin KM; Le Page RW; Jarvis AW
    Appl Environ Microbiol; 1996 Apr; 62(4):1452-3. PubMed ID: 8919811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.