These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30081794)

  • 1. Patent Review on Laser Interference Lithography Technique for Producing Periodic Nanostructure.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):231-242. PubMed ID: 30081794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography.
    Ahn S; Choi J; Kim E; Dong KY; Jeon H; Ju BK; Lee KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6039-43. PubMed ID: 22121654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 360 nm Continuous Wave Laser-Based Contact or Non-Contact Laser Interference Nano Lithography.
    Yun DH; Shin BS; Park JH; Ma YW; Gwak CY; You DB; Kim B
    J Nanosci Nanotechnol; 2020 Jan; 20(1):128-134. PubMed ID: 31383147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on fabrication of nanoscale patterns using laser interference lithography.
    Choi J; Chung MH; Dong KY; Park EM; Ham DJ; Park Y; Song IS; Pak JJ; Ju BK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):778-81. PubMed ID: 21446544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discover Patent Landscape of Two-photon Polymerization Technology for the Production of 3D Nano-structure Using Claim-based Approach.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):218-230. PubMed ID: 30117404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity modulation based optical proximity optimization for the maskless lithography.
    Liu J; Liu J; Deng Q; Feng J; Zhou S; Hu S
    Opt Express; 2020 Jan; 28(1):548-557. PubMed ID: 32118980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure.
    Lee JS; Shim YS; Park CH; Hwang H; Park CH; Joo CW; Park YW; Lee J; Ju BK
    Nanotechnology; 2019 Feb; 30(8):085302. PubMed ID: 30524094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching.
    Domanski M; Luttge R; Lamers E; Walboomers XF; Winnubst L; Jansen JA; Gardeniers JG
    Nanotechnology; 2012 Feb; 23(6):065306. PubMed ID: 22248677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd's mirror.
    Kim H; Jung H; Lee DH; Lee KB; Jeon H
    Appl Opt; 2016 Jan; 55(2):354-9. PubMed ID: 26835772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution in Lithography Techniques: Microlithography to Nanolithography.
    Sharma E; Rathi R; Misharwal J; Sinhmar B; Kumari S; Dalal J; Kumar A
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface.
    Yu F; Li P; Shen H; Mathur S; Lehr CM; Bakowsky U; Mücklich F
    Biomaterials; 2005 May; 26(15):2307-12. PubMed ID: 15585233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography.
    Nagaraj Rao RR; Bienert F; Moeller M; Bashir D; Hamri A; Celle F; Gamet E; Ahmed MA; Jourlin Y
    Opt Express; 2023 Jan; 31(1):371-380. PubMed ID: 36606973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom lithography with a holographic light mask.
    Mützel M; Tandler S; Haubrich D; Meschede D; Peithmann K; Flaspöhler M; Buse K
    Phys Rev Lett; 2002 Feb; 88(8):083601. PubMed ID: 11863954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.
    Mojarad N; Hojeij M; Wang L; Gobrecht J; Ekinci Y
    Nanoscale; 2015 Mar; 7(9):4031-7. PubMed ID: 25653148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Acoustic Light Sculpting for On-Demand Maskless Lithography.
    Surdo S; Duocastella M
    Adv Sci (Weinh); 2019 Jul; 6(14):1900304. PubMed ID: 31380209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possibility of Benzene Exposure in Workers of a Semiconductor Industry Based on the Patent Resources, 1990-2010.
    Choi S; Park D; Park Y
    Saf Health Work; 2021 Sep; 12(3):403-415. PubMed ID: 34527403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme ultraviolet Talbot interference lithography.
    Li W; Marconi MC
    Opt Express; 2015 Oct; 23(20):25532-8. PubMed ID: 26480070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro/nano scale amorphization of silicon by femtosecond laser irradiation.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2009 Sep; 17(19):16518-26. PubMed ID: 19770866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.