BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30081825)

  • 21. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model.
    Hellweger FL; Huang Y; Luo H
    ISME J; 2018 May; 12(5):1180-1187. PubMed ID: 29330536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of intra-genomic GC content homogeneity within prokaryotes.
    Bohlin J; Snipen L; Hardy SP; Kristoffersen AB; Lagesen K; Dønsvik T; Skjerve E; Ussery DW
    BMC Genomics; 2010 Aug; 11():464. PubMed ID: 20691090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata.
    DeRose-Wilson LJ; Gaut BS
    BMC Evol Biol; 2007 Apr; 7():66. PubMed ID: 17451608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of universal and taxon-specific parameters of prokaryotic genome evolution.
    Sela I; Wolf YI; Koonin EV
    PLoS One; 2018; 13(4):e0195571. PubMed ID: 29652909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomics of Bacteria commonly identified in the built environment.
    Merino N; Zhang S; Tomita M; Suzuki H
    BMC Genomics; 2019 Jan; 20(1):92. PubMed ID: 30691394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis.
    Glémin S; Clément Y; David J; Ressayre A
    Trends Genet; 2014 Jul; 30(7):263-70. PubMed ID: 24916172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into bacterial genome composition through variable target GC content profiling.
    Mann S; Li J; Chen YP
    J Comput Biol; 2010 Jan; 17(1):79-96. PubMed ID: 20078399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome expansion in bacteria: the curios case of Chlamydia trachomatis.
    Bohlin J
    BMC Res Notes; 2015 Sep; 8():512. PubMed ID: 26423146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compositional correlation studies among the three different codon positions in 12 bacterial genomes.
    Majumdar S; Gupta SK; Sundararajan VS; Ghosh TC
    Biochem Biophys Res Commun; 1999 Dec; 266(1):66-71. PubMed ID: 10581166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expected relationship between the silent substitution rate and the GC content: implications for the evolution of isochores.
    Piganeau G; Mouchiroud D; Duret L; Gautier C
    J Mol Evol; 2002 Jan; 54(1):129-33. PubMed ID: 11734906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The consequences of base pair composition biases for regulatory network organization in prokaryotes.
    Cordero OX; Hogeweg P
    Mol Biol Evol; 2009 Oct; 26(10):2171-3. PubMed ID: 19567917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The vertebrate genome: isochores and evolution.
    Bernardi G
    Mol Biol Evol; 1993 Jan; 10(1):186-204. PubMed ID: 8450755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes.
    Mugal CF; Arndt PF; Holm L; Ellegren H
    G3 (Bethesda); 2015 Jan; 5(3):441-7. PubMed ID: 25591920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content.
    Smith DR; Lee RW
    Mol Biol Evol; 2008 Mar; 25(3):487-96. PubMed ID: 18222946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Codon usage between genomes is constrained by genome-wide mutational processes.
    Chen SL; Lee W; Hottes AK; Shapiro L; McAdams HH
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3480-5. PubMed ID: 14990797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias.
    Marín A; Xia X
    J Theor Biol; 2008 Aug; 253(3):508-13. PubMed ID: 18486155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G4PromFinder: an algorithm for predicting transcription promoters in GC-rich bacterial genomes based on AT-rich elements and G-quadruplex motifs.
    Di Salvo M; Pinatel E; Talà A; Fondi M; Peano C; Alifano P
    BMC Bioinformatics; 2018 Feb; 19(1):36. PubMed ID: 29409441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome Genome of Burkholderia cenocepacia.
    Dillon MM; Sung W; Lynch M; Cooper VS
    Genetics; 2015 Jul; 200(3):935-46. PubMed ID: 25971664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base-Biased Evolution of Disease-Associated Mutations in the Human Genome.
    Xue C; Chen H; Yu F
    Hum Mutat; 2016 Nov; 37(11):1209-1214. PubMed ID: 27507420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes.
    Wan XF; Xu D; Kleinhofs A; Zhou J
    BMC Evol Biol; 2004 Jun; 4():19. PubMed ID: 15222899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.