These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 30082414)
21. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets. Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339 [TBL] [Abstract][Full Text] [Related]
22. L1 interaction with ankyrin regulates mediolateral topography in the retinocollicular projection. Buhusi M; Schlatter MC; Demyanenko GP; Thresher R; Maness PF J Neurosci; 2008 Jan; 28(1):177-88. PubMed ID: 18171935 [TBL] [Abstract][Full Text] [Related]
23. Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps. Willshaw D Development; 2006 Jul; 133(14):2705-17. PubMed ID: 16774998 [TBL] [Abstract][Full Text] [Related]
24. Effect of Bcl-2 overexpression on establishment of ipsilateral retinocollicular projection in mice. Yakura T; Fukuda Y; Sawai H Neuroscience; 2002; 110(4):667-73. PubMed ID: 11934474 [TBL] [Abstract][Full Text] [Related]
25. The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse. Pratt T; Tian NM; Simpson TI; Mason JO; Price DJ Development; 2004 Aug; 131(15):3773-84. PubMed ID: 15240555 [TBL] [Abstract][Full Text] [Related]
26. A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Harbott LK; Nobes CD Mol Cell Neurosci; 2005 Sep; 30(1):1-11. PubMed ID: 15996481 [TBL] [Abstract][Full Text] [Related]
27. Persistence of graded EphA/Ephrin-A expression in the adult frog visual system. Bach H; Feldheim DA; Flanagan JG; Scalia F J Comp Neurol; 2003 Dec; 467(4):549-65. PubMed ID: 14624488 [TBL] [Abstract][Full Text] [Related]
28. Endocytosis of EphA receptors is essential for the proper development of the retinocollicular topographic map. Yoo S; Kim Y; Noh H; Lee H; Park E; Park S EMBO J; 2011 Apr; 30(8):1593-607. PubMed ID: 21343910 [TBL] [Abstract][Full Text] [Related]
29. Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus. Liu M; Wang L; Cang J Front Neural Circuits; 2014; 8():23. PubMed ID: 24723853 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms involved in development of retinotectal connections: roles of Eph receptor tyrosine kinases, NMDA receptors and nitric oxide. Ernst AF; Jurney WM; McLoon SC Prog Brain Res; 1998; 118():115-31. PubMed ID: 9932438 [TBL] [Abstract][Full Text] [Related]
31. Developmental period for N-methyl-D-aspartate (NMDA) receptor-dependent synapse elimination correlated with visuotopic map refinement. Colonnese MT; Constantine-Paton M J Comp Neurol; 2006 Feb; 494(5):738-51. PubMed ID: 16374812 [TBL] [Abstract][Full Text] [Related]
32. Target-independent ephrina/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping. Suetterlin P; Drescher U Neuron; 2014 Nov; 84(4):740-52. PubMed ID: 25451192 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. O'Leary DD; McLaughlin T Prog Brain Res; 2005; 147():43-65. PubMed ID: 15581697 [TBL] [Abstract][Full Text] [Related]
34. Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developing Xenopus visual system. Johnson KG; McKinnell IW; Stoker AW; Holt CE J Neurobiol; 2001 Nov; 49(2):99-117. PubMed ID: 11598918 [TBL] [Abstract][Full Text] [Related]
35. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. Yates PA; Roskies AL; McLaughlin T; O'Leary DD J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643 [TBL] [Abstract][Full Text] [Related]
36. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity. Cheng Q; Graves MD; Pallas SL Dev Neurobiol; 2019 Mar; 79(3):252-267. PubMed ID: 30916472 [TBL] [Abstract][Full Text] [Related]
37. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. Monschau B; Kremoser C; Ohta K; Tanaka H; Kaneko T; Yamada T; Handwerker C; Hornberger MR; Löschinger J; Pasquale EB; Siever DA; Verderame MF; Müller BK; Bonhoeffer F; Drescher U EMBO J; 1997 Mar; 16(6):1258-67. PubMed ID: 9135142 [TBL] [Abstract][Full Text] [Related]
38. The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Li H; Zhang P; Liu C; Wang Y; Deng Y; Dong W; Yu Y Cells; 2022 Dec; 12(1):. PubMed ID: 36611803 [TBL] [Abstract][Full Text] [Related]
39. A stochastic model for retinocollicular map development. Koulakov AA; Tsigankov DN BMC Neurosci; 2004 Aug; 5():30. PubMed ID: 15339341 [TBL] [Abstract][Full Text] [Related]
40. Eph/ephrin expression in the adult rat visual system following localized retinal lesions: localized and transneuronal up-regulation in the retina and superior colliculus. Rodger J; Symonds AC; Springbett J; Shen WY; Bartlett CA; Rakoczy PE; Beazley LD; Dunlop SA Eur J Neurosci; 2005 Oct; 22(8):1840-52. PubMed ID: 16262624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]