These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30082611)

  • 1. Truly Target-Focused Pharmacophore Modeling: A Novel Tool for Mapping Intermolecular Surfaces.
    Mortier J; Dhakal P; Volkamer A
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30082611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2.
    Zou J; Xie HZ; Yang SY; Chen JJ; Ren JX; Wei YQ
    J Mol Graph Model; 2008 Nov; 27(4):430-8. PubMed ID: 18786843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.
    Wolber G; Seidel T; Bendix F; Langer T
    Drug Discov Today; 2008 Jan; 13(1-2):23-9. PubMed ID: 18190860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling.
    Yu W; Lakkaraju SK; Raman EP; MacKerell AD
    J Comput Aided Mol Des; 2014 May; 28(5):491-507. PubMed ID: 24610239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor pharmacophore ensemble (REPHARMBLE): a probabilistic pharmacophore modeling approach using multiple protein-ligand complexes.
    Kumar SP
    J Mol Model; 2018 Sep; 24(10):282. PubMed ID: 30220049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and applications of structure based pharmacophores in drug discovery.
    Pirhadi S; Shiri F; Ghasemi JB
    Curr Top Med Chem; 2013; 13(9):1036-47. PubMed ID: 23651482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pocket v.2: further developments on receptor-based pharmacophore modeling.
    Chen J; Lai L
    J Chem Inf Model; 2006; 46(6):2684-91. PubMed ID: 17125208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.
    Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS
    J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRAIL: GRids of phArmacophore Interaction fieLds.
    Schuetz DA; Seidel T; Garon A; Martini R; Körbel M; Ecker GF; Langer T
    J Chem Theory Comput; 2018 Sep; 14(9):4958-4970. PubMed ID: 30075621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of Protein Binding Sites using clustering algorithms - Development of a pharmacophore based drug discovery tool.
    Braun J; Fayne D
    J Mol Graph Model; 2022 Sep; 115():108228. PubMed ID: 35667141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures.
    Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF
    J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative validated molecular modeling of p53-HDM2 inhibitors as antiproliferative agents.
    Mondal C; Halder AK; Adhikari N; Saha A; Saha KD; Gayen S; Jha T
    Eur J Med Chem; 2015 Jan; 90():860-75. PubMed ID: 25535952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Graph Representation of Pharmacophore Models.
    Arthur G; Oliver W; Klaus B; Thomas S; Gökhan I; Sharon B; Isabelle T; Pierre D; Thierry L
    Front Mol Biosci; 2020; 7():599059. PubMed ID: 33425991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI's in their binding pockets.
    Daeyaert F; de Jonge M; Heeres J; Koymans L; Lewi P; Vinkers MH; Janssen PA
    Proteins; 2004 Feb; 54(3):526-33. PubMed ID: 14748000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
    Potemkin AV; Grishina MA; Potemkin VA
    Curr Drug Discov Technol; 2017; 14(3):181-205. PubMed ID: 28176631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First universal pharmacophore model for hERG1 K
    Durdagi S; Erol I; Salmas RE; Patterson M; Noskov SY
    J Mol Graph Model; 2017 Jun; 74():153-170. PubMed ID: 28499268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacophore modeling methods in focused library selection - applications in the context of a new classification scheme.
    Luu TT; Malcolm N; Nadassy K
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):488-99. PubMed ID: 21521148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-organizing algorithm for molecular alignment and pharmacophore development.
    Bandyopadhyay D; Agrafiotis DK
    J Comput Chem; 2008 Apr; 29(6):965-82. PubMed ID: 17999384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.