These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30082883)

  • 1. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds.
    Liao K; Yang YF; Li Y; Sanders JN; Houk KN; Musaev DG; Davies HML
    Nat Chem; 2018 Oct; 10(10):1048-1055. PubMed ID: 30082883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization.
    Davies HML; Liao K
    Nat Rev Chem; 2019 Jun; 3(6):347-360. PubMed ID: 32995499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of sterically demanding chiral dirhodium catalysts in site-selective C-H functionalization of activated primary C-H bonds.
    Qin C; Davies HM
    J Am Chem Soc; 2014 Jul; 136(27):9792-6. PubMed ID: 24933043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D
    Chen Z; Shimabukuro K; Bacsa J; Musaev DG; Davies HML
    J Am Chem Soc; 2024 Jul; 146(28):19460-19473. PubMed ID: 38959398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-selective and stereoselective functionalization of unactivated C-H bonds.
    Liao K; Negretti S; Musaev DG; Bacsa J; Davies HM
    Nature; 2016 May; 533(7602):230-4. PubMed ID: 27172046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst-Controlled Selective Functionalization of Unactivated C-H Bonds in the Presence of Electronically Activated C-H Bonds.
    Liu W; Ren Z; Bosse AT; Liao K; Goldstein EL; Bacsa J; Musaev DG; Stoltz BM; Davies HML
    J Am Chem Soc; 2018 Sep; 140(38):12247-12255. PubMed ID: 30222321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C-H Functionalization Reactions.
    Cammarota RC; Liu W; Bacsa J; Davies HML; Sigman MS
    J Am Chem Soc; 2022 Feb; 144(4):1881-1898. PubMed ID: 35073072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distal Allylic/Benzylic C-H Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes.
    Vaitla J; Boni YT; Davies HML
    Angew Chem Int Ed Engl; 2020 May; 59(19):7397-7402. PubMed ID: 31908146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective Intermolecular C-H Functionalization of Primary Benzylic C-H Bonds Using ((Aryl)(diazo)methyl)phosphonates.
    Naeem Y; Matsuo BT; Davies HML
    ACS Catal; 2024 Jan; 14(1):124-130. PubMed ID: 38205024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.
    Wertz B; Ren Z; Bacsa J; Musaev DG; Davies HML
    J Org Chem; 2020 Oct; 85(19):12199-12211. PubMed ID: 32803966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis, and Evaluation of Extended C4-Symmetric Dirhodium Tetracarboxylate Catalysts.
    Garlets ZJ; Boni YT; Sharland JC; Kirby PR; Fu J; Bacsa J; Davies HML
    ACS Catal; 2022 Sep; 12(17):10841-10848. PubMed ID: 37274599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes.
    Davies HM; Morton D
    Chem Soc Rev; 2011 Apr; 40(4):1857-69. PubMed ID: 21359404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.
    Engle KM; Mei TS; Wasa M; Yu JQ
    Acc Chem Res; 2012 Jun; 45(6):788-802. PubMed ID: 22166158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Pd(OAc)
    Shao Q; Wu K; Zhuang Z; Qian S; Yu JQ
    Acc Chem Res; 2020 Apr; 53(4):833-851. PubMed ID: 32227915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol.
    Simmons EM; Hartwig JF
    Nature; 2012 Feb; 483(7387):70-3. PubMed ID: 22382981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,2,2-Trichloroethyl aryldiazoacetates as robust reagents for the enantioselective C-H functionalization of methyl ethers.
    Guptill DM; Davies HM
    J Am Chem Soc; 2014 Dec; 136(51):17718-21. PubMed ID: 25474724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the mechanism behind the site- and enantio-selectivity of C-H functionalization catalysed by chiral dirhodium catalyst.
    Zhou M; Springborg M
    Phys Chem Chem Phys; 2020 May; 22(17):9561-9572. PubMed ID: 32319983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ Kinetic Studies of Rh(II)-Catalyzed C-H Functionalization to Achieve High Catalyst Turnover Numbers.
    Wei B; Sharland JC; Blackmond DG; Musaev DG; Davies HML
    ACS Catal; 2022 Nov; 12(21):13400-13410. PubMed ID: 37274060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.