BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 30082923)

  • 1. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging.
    Fan Y; Wang P; Lu Y; Wang R; Zhou L; Zheng X; Li X; Piper JA; Zhang F
    Nat Nanotechnol; 2018 Oct; 13(10):941-946. PubMed ID: 30082923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide nanoparticles with efficient near-infrared-II emission for biological applications.
    Ge X; Wei R; Sun L
    J Mater Chem B; 2020 Dec; 8(45):10257-10270. PubMed ID: 33084729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging.
    Pei P; Chen Y; Sun C; Fan Y; Yang Y; Liu X; Lu L; Zhao M; Zhang H; Zhao D; Liu X; Zhang F
    Nat Nanotechnol; 2021 Sep; 16(9):1011-1018. PubMed ID: 34112994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Extended NIR-II Superior Imaging Window from 1500 to 1900 nm for High-Resolution In Vivo Multiplexed Imaging Based on Lanthanide Nanocrystals.
    Chen ZH; Wang X; Yang M; Ming J; Yun B; Zhang L; Wang X; Yu P; Xu J; Zhang H; Zhang F
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311883. PubMed ID: 37860881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emitting/Sensitizing Ions Spatially Separated Lanthanide Nanocrystals for Visualizing Tumors Simultaneously through Up- and Down-Conversion Near-Infrared II Luminescence In Vivo.
    Li Y; Zhang P; Ning H; Zeng J; Hou Y; Jing L; Liu C; Gao M
    Small; 2019 Dec; 15(51):e1905344. PubMed ID: 31762206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
    Caillé F; Bonnet CS; Buron F; Villette S; Helm L; Petoud S; Suzenet F; Tóth E
    Inorg Chem; 2012 Feb; 51(4):2522-32. PubMed ID: 22233349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Fidelity NIR-II Multiplexed Lifetime Bioimaging with Bright Double Interfaced Lanthanide Nanoparticles.
    Zhu X; Liu X; Zhang H; Zhao M; Pei P; Chen Y; Yang Y; Lu L; Yu P; Sun C; Ming J; Ábrahám IM; El-Toni AM; Khan A; Zhang F
    Angew Chem Int Ed Engl; 2021 Oct; 60(44):23545-23551. PubMed ID: 34487416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.
    Kim D; Lee N; Park YI; Hyeon T
    Bioconjug Chem; 2017 Jan; 28(1):115-123. PubMed ID: 27982578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Tumor-Microenvironment-Responsive Lanthanide-Cyanine FRET Sensor for NIR-II Luminescence-Lifetime In Situ Imaging of Hepatocellular Carcinoma.
    Zhao M; Li B; Wu Y; He H; Zhu X; Zhang H; Dou C; Feng L; Fan Y; Zhang F
    Adv Mater; 2020 Jul; 32(28):e2001172. PubMed ID: 32490572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles.
    Zhou S; Zheng W; Chen Z; Tu D; Liu Y; Ma E; Li R; Zhu H; Huang M; Chen X
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12498-502. PubMed ID: 25131425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm.
    Xue Z; Zeng S; Hao J
    Biomaterials; 2018 Jul; 171():153-163. PubMed ID: 29689412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A LRET Nanoplatform Consisting of Lanthanide and Amorphous Manganese Oxide for NIR-II Luminescence Lifetime Imaging of Tumor Redox Status.
    Zhao M; Zhuang H; Zhang H; Li B; Ming J; Chen X; Chen M
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202209592. PubMed ID: 36175373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ln
    Cao C; Wu N; Yuan W; Gu Y; Ke J; Feng W; Li F
    Nanoscale; 2020 Apr; 12(15):8248-8254. PubMed ID: 32239032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 808 nm light triggered lanthanide nanoprobes with enhanced down-shifting emission beyond 1500 nm for imaging-guided resection surgery of tumor and vascular visualization.
    I YL; Jiang M; Xue Z; Zeng S
    Theranostics; 2020; 10(15):6875-6885. PubMed ID: 32550909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and optical properties of a Y
    Wu L; Hu J; Zou Q; Lin Y; Huang D; Chen D; Lu H; Zhu H
    Nanoscale; 2020 Jul; 12(26):14180-14187. PubMed ID: 32602515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lanthanide-based luminescence biolabelling.
    Sy M; Nonat A; Hildebrandt N; Charbonnière LJ
    Chem Commun (Camb); 2016 Apr; 52(29):5080-95. PubMed ID: 26911318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive optical imaging with lanthanide lumiphores.
    Cho U; Riordan DP; Ciepla P; Kocherlakota KS; Chen JK; Harbury PB
    Nat Chem Biol; 2018 Jan; 14(1):15-21. PubMed ID: 29106397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in near-infrared I/II persistent luminescent nanoparticles for biosensing and bioimaging in cancer analysis.
    Chan MH; Chang YC
    Anal Bioanal Chem; 2024 Jul; 416(17):3887-3905. PubMed ID: 38592442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy.
    Shi J; Sun X; Zheng S; Li J; Fu X; Zhang H
    Biomaterials; 2018 Jan; 152():15-23. PubMed ID: 29078137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling upconversion nanocrystals for emerging applications.
    Zhou B; Shi B; Jin D; Liu X
    Nat Nanotechnol; 2015 Nov; 10(11):924-36. PubMed ID: 26530022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.