These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30083933)

  • 1. These Colors Don't Run: Regulation of Pigment-Biosynthesis in Echinoderms.
    Calestani C; Wessel GM
    Results Probl Cell Differ; 2018; 65():515-525. PubMed ID: 30083933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [On the biosynthesis of echinochrome A by the sea urchin Arbacia pustulosa].
    Salaque A; Barbier M; Lederer E
    Bull Soc Chim Biol (Paris); 1967 Jul; 49(7):841-8. PubMed ID: 6056745
    [No Abstract]   [Full Text] [Related]  

  • 4. Bioresources from echinoderms.
    Yokota Y
    Prog Mol Subcell Biol; 2005; 39():251-66. PubMed ID: 17152701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotenoids in the developing eggs of the sea urchin Paracentrotus lividus.
    DE NICOLA M; GOODWIN TW
    Exp Cell Res; 1954 Aug; 7(1):23-31. PubMed ID: 13200503
    [No Abstract]   [Full Text] [Related]  

  • 6. The carotenoids of the carapace of the echinoderm Ophidiaster ophidianus.
    DE NICOLA M
    Biochem J; 1954 Apr; 56(4):555-8. PubMed ID: 13159880
    [No Abstract]   [Full Text] [Related]  

  • 7. A study of the synthesis of naphthaquinone pigments by the larvae of two species of sea urchins and their reciprocal hybrids.
    Griffiths M
    Dev Biol; 1965 Jun; 11(3):433-47. PubMed ID: 5840025
    [No Abstract]   [Full Text] [Related]  

  • 8. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment.
    Cary JW; Harris-Coward PY; Ehrlich KC; Di Mavungu JD; Malysheva SV; De Saeger S; Dowd PF; Shantappa S; Martens SL; Calvo AM
    Fungal Genet Biol; 2014 Mar; 64():25-35. PubMed ID: 24412484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscope investigations of the modes of yolk and pigment formation in sea urchin oocytes.
    Takashima Y; Takashima R
    Okajimas Folia Anat Jpn; 1966 Oct; 42(5):249-64. PubMed ID: 6013493
    [No Abstract]   [Full Text] [Related]  

  • 10. Patterns and Drivers of Egg Pigment Intensity and Colour Diversity in the Ocean: A Meta-Analysis of Phylum Echinodermata.
    Montgomery EM; Hamel JF; Mercier A
    Adv Mar Biol; 2017; 76():41-104. PubMed ID: 28065296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigmentation biosynthesis influences the microbiome in sea urchins.
    Wessel GM; Kiyomoto M; Reitzel AM; Carrier TJ
    Proc Biol Sci; 2022 Aug; 289(1981):20221088. PubMed ID: 35975446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification.
    Wolkenstein K
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2794-9. PubMed ID: 25730856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triterpenoids in Echinoderms: Fundamental Differences in Diversity and Biosynthetic Pathways.
    Claereboudt EJS; Caulier G; Decroo C; Colson E; Gerbaux P; Claereboudt MR; Schaller H; Flammang P; Deleu M; Eeckhaut I
    Mar Drugs; 2019 Jun; 17(6):. PubMed ID: 31200494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii.
    Chen Y; Feng P; Shang Y; Xu YJ; Wang C
    Fungal Genet Biol; 2015 Aug; 81():142-9. PubMed ID: 25445307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further investigations on the change in the pigment during embryonic development of echinoderms.
    DE NICOLA M
    Exp Cell Res; 1954 Nov; 7(2):368-73. PubMed ID: 13220583
    [No Abstract]   [Full Text] [Related]  

  • 16. Variation in pigment production by Planococcus citreus Migula with cultural age and with sea salt concentration in the medium.
    Thirkell D; Summerfield M
    Antonie Van Leeuwenhoek; 1980; 46(1):51-7. PubMed ID: 7396481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Availability and Utilization of Pigments from Microalgae.
    Begum H; Yusoff FM; Banerjee S; Khatoon H; Shariff M
    Crit Rev Food Sci Nutr; 2016 Oct; 56(13):2209-22. PubMed ID: 25674822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.
    Elphick MR
    Gen Comp Endocrinol; 2014 Sep; 205():23-35. PubMed ID: 24583124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life history evolution and comparative developmental biology of echinoderms.
    Hart MW
    Evol Dev; 2002; 4(1):62-71. PubMed ID: 11868659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.