These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30084044)

  • 1. Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies.
    Man F; Lammers T; T M de Rosales R
    Mol Imaging Biol; 2018 Oct; 20(5):683-695. PubMed ID: 30084044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine.
    Man F; Gawne PJ; T M de Rosales R
    Adv Drug Deliv Rev; 2019 Mar; 143():134-160. PubMed ID: 31170428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound.
    Cooley MB; Wegierak D; Exner AA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution 3D visualization of nanomedicine distribution in tumors.
    Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST
    Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor targeting via EPR: Strategies to enhance patient responses.
    Golombek SK; May JN; Theek B; Appold L; Drude N; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2018 May; 130():17-38. PubMed ID: 30009886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-guided drug delivery: preclinical applications and clinical translation.
    Ojha T; Rizzo L; Storm G; Kiessling F; Lammers T
    Expert Opin Drug Deliv; 2015 Aug; 12(8):1203-7. PubMed ID: 26083469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging-assisted anticancer nanotherapy.
    Dasgupta A; Biancacci I; Kiessling F; Lammers T
    Theranostics; 2020; 10(3):956-967. PubMed ID: 31938045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives.
    Sun R; Xiang J; Zhou Q; Piao Y; Tang J; Shao S; Zhou Z; Bae YH; Shen Y
    Adv Drug Deliv Rev; 2022 Dec; 191():114614. PubMed ID: 36347432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.
    Ojha T; Pathak V; Shi Y; Hennink WE; Moonen CTW; Storm G; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2017 Sep; 119():44-60. PubMed ID: 28697952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
    Prabhakar U; Maeda H; Jain RK; Sevick-Muraca EM; Zamboni W; Farokhzad OC; Barry ST; Gabizon A; Grodzinski P; Blakey DC
    Cancer Res; 2013 Apr; 73(8):2412-7. PubMed ID: 23423979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving nanotherapy delivery and action through image-guided systems pharmacology.
    Ng TSC; Garlin MA; Weissleder R; Miller MA
    Theranostics; 2020; 10(3):968-997. PubMed ID: 31938046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theranostic nanomedicine.
    Lammers T; Aime S; Hennink WE; Storm G; Kiessling F
    Acc Chem Res; 2011 Oct; 44(10):1029-38. PubMed ID: 21545096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Passive Targeting to Personalized Nanomedicine: Multidimensional Insights on Nanoparticles' Interaction with the Tumor Microenvironment.
    Sebak AA; El-Shenawy BM; El-Safy S; El-Shazly M
    Curr Pharm Biotechnol; 2021; 22(11):1444-1465. PubMed ID: 33308126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular imaging in nanomedicine - A developmental tool and a clinical necessity.
    Dearling JLJ; Packard AB
    J Control Release; 2017 Sep; 261():23-30. PubMed ID: 28624600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.