BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30084081)

  • 1. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
    Santos-Martins D; Eberhardt J; Bianco G; Solis-Vasquez L; Ambrosio FA; Koch A; Forli S
    J Comput Aided Mol Des; 2019 Dec; 33(12):1071-1081. PubMed ID: 31691920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations.
    Mey ASJS; Jiménez JJ; Michel J
    J Comput Aided Mol Des; 2018 Jan; 32(1):199-210. PubMed ID: 29134431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-ligand docking using FFT based sampling: D3R case study.
    Padhorny D; Hall DR; Mirzaei H; Mamonov AB; Moghadasi M; Alekseenko A; Beglov D; Kozakov D
    J Comput Aided Mol Des; 2018 Jan; 32(1):225-230. PubMed ID: 29101520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4.
    El Khoury L; Santos-Martins D; Sasmal S; Eberhardt J; Bianco G; Ambrosio FA; Solis-Vasquez L; Koch A; Forli S; Mobley DL
    J Comput Aided Mol Des; 2019 Dec; 33(12):1011-1020. PubMed ID: 31691919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MathDL: mathematical deep learning for D3R Grand Challenge 4.
    Nguyen DD; Gao K; Wang M; Wei GW
    J Comput Aided Mol Des; 2020 Feb; 34(2):131-147. PubMed ID: 31734815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-based 3D QSAR analysis of estrogen receptor ligands--merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods.
    Sippl W
    J Comput Aided Mol Des; 2000 Aug; 14(6):559-72. PubMed ID: 10921772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-ComBind: harnessing unlabeled data for improved binding pose prediction.
    McNutt AT; Koes DR
    J Comput Aided Mol Des; 2023 Dec; 38(1):3. PubMed ID: 38062207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-guided method for protein-ligand complex structure prediction: Application to CASP15 protein-ligand studies.
    Xu X; Duan R; Zou X
    Proteins; 2023 Dec; 91(12):1829-1836. PubMed ID: 37283068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Mechanics-Based Fast and Reliable Prediction of Binding Pose Structures.
    Al-Ansi AY; Al-Shawesh GH; Ru X; Lin Z
    J Phys Chem B; 2024 Jun; 128(25):6059-6070. PubMed ID: 38875526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening.
    Zhang X; Shen C; Zhang H; Kang Y; Hsieh CY; Hou T
    Acc Chem Res; 2024 May; 57(10):1500-1509. PubMed ID: 38577892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking.
    Liu Y; Grimm M; Dai WT; Hou MC; Xiao ZX; Cao Y
    Acta Pharmacol Sin; 2020 Jan; 41(1):138-144. PubMed ID: 31263275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ALiBERO: evolving a team of complementary pocket conformations rather than a single leader.
    Rueda M; Totrov M; Abagyan R
    J Chem Inf Model; 2012 Oct; 52(10):2705-14. PubMed ID: 22947092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PL-PatchSurfer: a novel molecular local surface-based method for exploring protein-ligand interactions.
    Hu B; Zhu X; Monroe L; Bures MG; Kihara D
    Int J Mol Sci; 2014 Aug; 15(9):15122-45. PubMed ID: 25167137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding.
    Peach ML; Cachau RE; Nicklaus MC
    J Mol Recognit; 2017 Aug; 30(8):. PubMed ID: 28233410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction.
    Pang M; He W; Lu X; She Y; Xie L; Kong R; Chang S
    BMC Bioinformatics; 2023 Nov; 24(1):444. PubMed ID: 37996806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble.
    Sung E; Kim S; Shin W
    BMC Bioinformatics; 2010 May; 11():256. PubMed ID: 20478076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structure-guided approach for protein pocket modeling and affinity prediction.
    Varela R; Cleves AE; Spitzer R; Jain AN
    J Comput Aided Mol Des; 2013 Nov; 27(11):917-34. PubMed ID: 24214361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.