These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30084331)

  • 1. Advances in Computational Studies of Potential Drug Targets in Mycobacterium tuberculosis.
    Alladi SM
    Curr Top Med Chem; 2018; 18(13):1062-1074. PubMed ID: 30084331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net.
    Gupta S; Fatima Z; Kumawat S
    Biosystems; 2021 Nov; 209():104509. PubMed ID: 34461147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
    Ekins S; Godbole AA; Kéri G; Orfi L; Pato J; Bhat RS; Verma R; Bradley EK; Nagaraja V
    Tuberculosis (Edinb); 2017 Mar; 103():52-60. PubMed ID: 28237034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets.
    Jamshidi N; Palsson BØ
    BMC Syst Biol; 2007 Jun; 1():26. PubMed ID: 17555602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets.
    Vashisht R; Bhat AG; Kushwaha S; Bhardwaj A; ; Brahmachari SK
    J Transl Med; 2014 Oct; 12():263. PubMed ID: 25304862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based approaches to drug discovery against tuberculosis.
    Holton SJ; Weiss MS; Tucker PA; Wilmanns M
    Curr Protein Pept Sci; 2007 Aug; 8(4):365-75. PubMed ID: 17696869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future for early-stage tuberculosis drug discovery.
    Zuniga ES; Early J; Parish T
    Future Microbiol; 2015; 10(2):217-29. PubMed ID: 25689534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis.
    Defelipe LA; Do Porto DF; Pereira Ramos PI; Nicolás MF; Sosa E; Radusky L; Lanzarotti E; Turjanski AG; Marti MA
    Tuberculosis (Edinb); 2016 Mar; 97():181-92. PubMed ID: 26791267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.
    Fakhar Z; Naiker S; Alves CN; Govender T; Maguire GE; Lameira J; Lamichhane G; Kruger HG; Honarparvar B
    J Biomol Struct Dyn; 2016 Nov; 34(11):2399-417. PubMed ID: 26612108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinases as antituberculosis targets: The case of thymidylate kinases.
    Sukumar S; Krishman A; Khan MKA
    Front Biosci (Landmark Ed); 2020 Mar; 25(9):1636-1654. PubMed ID: 32114448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB
    J Med Chem; 2013 Oct; 56(20):7755-60. PubMed ID: 23927683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analyses of the proteins from Mycobacterium tuberculosis and human genomes: Identification of potential tuberculosis drug targets.
    Sridhar S; Dash P; Guruprasad K
    Gene; 2016 Mar; 579(1):69-74. PubMed ID: 26762852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing pyrrole-derived antimycobacterial agents: a rational lead optimization approach.
    Biava M; Porretta GC; Poce G; Battilocchio C; Alfonso S; de Logu A; Manetti F; Botta M
    ChemMedChem; 2011 Apr; 6(4):593-9. PubMed ID: 21341373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics.
    Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC
    Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of mycobacterium tuberculosis.
    Manetti F; Magnani M; Castagnolo D; Passalacqua L; Botta M; Corelli F; Saddi M; Deidda D; De Logu A
    ChemMedChem; 2006 Sep; 1(9):973-89. PubMed ID: 16892466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheminformatics Based Machine Learning Approaches for Assessing Glycolytic Pathway Antagonists of Mycobacterium tuberculosis.
    Tiwari K; Jamal S; Grover S; Goyal S; Singh A; Grover A
    Comb Chem High Throughput Screen; 2016; 19(8):667-675. PubMed ID: 27291589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.