These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30084386)

  • 21. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive mechanism of pitch recoil in flapping insect wings.
    Ishihara D; Horie T
    Bioinspir Biomim; 2016 Dec; 12(1):016008. PubMed ID: 27995899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight.
    Wang C; Ning Y; Wang X; Zhang J; Wang L
    Appl Bionics Biomech; 2020; 2020():8843360. PubMed ID: 33425005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully-printed metamaterial-type flexible wings with controllable flight characteristics.
    Zhilyaev I; Anerao N; Kottapalli AGP; Yilmaz MC; Murat M; Ranjbar M; Krushynska A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34905740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.
    Burgers P; Alexander DE
    PLoS One; 2012; 7(5):e36732. PubMed ID: 22629326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gust-mitigating potential of flapping wings.
    Fisher A; Ravi S; Watkins S; Watmuff J; Wang C; Liu H; Petersen P
    Bioinspir Biomim; 2016 Aug; 11(4):046010. PubMed ID: 27481211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight.
    Tanaka H; Whitney JP; Wood RJ
    Integr Comp Biol; 2011 Jul; 51(1):142-50. PubMed ID: 21622947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.
    Schunk C; Swartz SM; Breuer KS
    Interface Focus; 2017 Feb; 7(1):20160083. PubMed ID: 28163875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple model of wake capture aerodynamics.
    Nabawy MRA
    J R Soc Interface; 2023 Sep; 20(206):20230282. PubMed ID: 37751875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
    Kang CK; Shyy W
    J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shape, flapping and flexion: wing and fin design for forward flight.
    Combes SA; Daniel TL
    J Exp Biol; 2001 Jun; 204(Pt 12):2073-85. PubMed ID: 11441049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible wings and fins: bending by inertial or fluid-dynamic forces?
    Daniel TL; Combes SA
    Integr Comp Biol; 2002 Nov; 42(5):1044-9. PubMed ID: 21680386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.