BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30084394)

  • 1. Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions.
    Blaum BS; Neu U; Peters T; Stehle T
    Acta Crystallogr F Struct Biol Commun; 2018 Aug; 74(Pt 8):451-462. PubMed ID: 30084394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy.
    Hemmi H
    Methods Mol Biol; 2014; 1200():501-9. PubMed ID: 25117260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting and Characterizing Interactions of Metabolites with Proteins by Saturation Transfer Difference Nuclear Magnetic Resonance (STD NMR) Spectroscopy.
    Nedielkov R; Möller HM
    Methods Mol Biol; 2023; 2554():123-139. PubMed ID: 36178624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disentangling Glycan-Protein Interactions: Nuclear Magnetic Resonance (NMR) to the Rescue.
    Bertuzzi S; Poveda A; Ardá A; Gimeno A; Jiménez-Barbero J
    J Vis Exp; 2024 May; (207):. PubMed ID: 38829120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution.
    Haselhorst T; Lamerz AC; Itzstein Mv
    Methods Mol Biol; 2009; 534():375-86. PubMed ID: 19277538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy.
    Wagstaff JL; Taylor SL; Howard MJ
    Mol Biosyst; 2013 Apr; 9(4):571-7. PubMed ID: 23232937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorinated carbohydrates as lectin ligands: versatile sensors in 19F-detected saturation transfer difference NMR spectroscopy.
    Diercks T; Ribeiro JP; Cañada FJ; André S; Jiménez-Barbero J; Gabius HJ
    Chemistry; 2009 Jun; 15(23):5666-8. PubMed ID: 19388026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding Moiety Mapping by Saturation Transfer Difference NMR.
    Brender JR; Krishnamoorthy J; Ghosh A; Bhunia A
    Methods Mol Biol; 2018; 1824():49-65. PubMed ID: 30039401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor.
    Mayer M; Meyer B
    J Am Chem Soc; 2001 Jun; 123(25):6108-17. PubMed ID: 11414845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ; Mack JC; Olejniczak ET; Park C; Dandliker PJ; Beutel BA
    J Am Chem Soc; 2004 Mar; 126(8):2390-8. PubMed ID: 14982445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Quantitative Validation of 3D Models of Low-Affinity Protein-Ligand Complexes by STD NMR Spectroscopy.
    Nepravishta R; Ramírez-Cárdenas J; Rocha G; Walpole S; Hicks T; Monaco S; Muñoz-García JC; Angulo J
    J Med Chem; 2024 Jun; 67(12):10025-10034. PubMed ID: 38848103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-angle X-ray scattering to obtain models of multivalent lectin-glycan complexes.
    Weeks SD; Bouckaert J
    Methods Mol Biol; 2014; 1200():511-26. PubMed ID: 25117261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of protein-ligand complexes by ligand-based NMR methods.
    Di Carluccio C; Forgione MC; Martini S; Berti F; Molinaro A; Marchetti R; Silipo A
    Carbohydr Res; 2021 May; 503():108313. PubMed ID: 33865181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.
    Enríquez-Navas PM; Guzzi C; Muñoz-García JC; Nieto PM; Angulo J
    Methods Mol Biol; 2015; 1273():475-87. PubMed ID: 25753726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated carbohydrates as lectin ligands: dissecting glycan-cyanovirin interactions by using 19F NMR spectroscopy.
    Matei E; André S; Glinschert A; Infantino AS; Oscarson S; Gabius HJ; Gronenborn AM
    Chemistry; 2013 Apr; 19(17):5364-74. PubMed ID: 23447543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR.
    Balazs YS; Lisitsin E; Carmiel O; Shoham G; Shoham Y; Schmidt A
    FEBS J; 2013 Sep; 280(18):4652-65. PubMed ID: 23863045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.
    Muñoz-García JC; Inacio Dos Reis R; Taylor RJ; Henry AJ; Watts A
    Chembiochem; 2018 May; 19(10):1022-1025. PubMed ID: 29537625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by saturation transfer difference NMR spectroscopy.
    Murata T; Hemmi H; Nakajima M; Yoshida M; Yamaguchi I
    Biochem Biophys Res Commun; 2003 Aug; 307(3):498-502. PubMed ID: 12893249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.