These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30084531)

  • 41. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prime Time for Genome Editing?
    Urnov FD
    N Engl J Med; 2020 Jan; 382(5):481-484. PubMed ID: 31995698
    [No Abstract]   [Full Text] [Related]  

  • 48. CRISPR/dCas9-mediated imaging of endogenous genomic loci in living Bombyx mori cells.
    Xing WQ; Ma SY; Liu YY; Xia QY
    Insect Sci; 2020 Dec; 27(6):1360-1364. PubMed ID: 31476099
    [No Abstract]   [Full Text] [Related]  

  • 49. Transient editing catches the eye.
    Nat Biomed Eng; 2021 Feb; 5(2):127. PubMed ID: 33580230
    [No Abstract]   [Full Text] [Related]  

  • 50. Adenine base editors catalyze cytosine conversions in human cells.
    Kim HS; Jeong YK; Hur JK; Kim JS; Bae S
    Nat Biotechnol; 2019 Oct; 37(10):1145-1148. PubMed ID: 31548727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori.
    Wang Y; Li Z; Xu J; Zeng B; Ling L; You L; Chen Y; Huang Y; Tan A
    Cell Res; 2013 Dec; 23(12):1414-6. PubMed ID: 24165890
    [No Abstract]   [Full Text] [Related]  

  • 52. CRISPR/Cas9-mediated disruption of the immediate early-0 and 2 as a therapeutic approach to Bombyx mori nucleopolyhedrovirus in transgenic silkworm.
    Dong Z; Hu Z; Qin Q; Dong F; Huang L; Long J; Chen P; Lu C; Pan M
    Insect Mol Biol; 2019 Feb; 28(1):112-122. PubMed ID: 30120848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk.
    Wang F; Wang Y; Tian C; Xu S; Wang R; Hou K; Chen W; Zhao P; Yu L; Lu Z; Kaplan DL; Xia Q
    Acta Biomater; 2018 Oct; 79():239-252. PubMed ID: 30149211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silkworm genetic sexing through W chromosome-linked, targeted gene integration.
    Zhang Z; Niu B; Ji D; Li M; Li K; James AA; Tan A; Huang Y
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):8752-8756. PubMed ID: 30104361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets.
    Takai H; Ozawa R; Takabayashi J; Fujii S; Arai K; Ichiki RT; Koeduka T; Dohra H; Ohnishi T; Taketazu S; Kobayashi J; Kainoh Y; Nakamura S; Fujii T; Ishikawa Y; Kiuchi T; Katsuma S; Uefune M; Shimada T; Matsui K
    Sci Rep; 2018 Aug; 8(1):11942. PubMed ID: 30093702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transgenic Silkworm-Based Silk Gland Bioreactor for Large Scale Production of Bioactive Human Platelet-Derived Growth Factor (PDGF-BB) in Silk Cocoons.
    Chen W; Wang F; Tian C; Wang Y; Xu S; Wang R; Hou K; Zhao P; Yu L; Lu Z; Xia Q
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30150526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms.
    Dong Z; Huang L; Dong F; Hu Z; Qin Q; Long J; Cao M; Chen P; Lu C; Pan MH
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9255-9265. PubMed ID: 30151606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide patterns of copy number variations in Spodoptera litura.
    Gong J; Cheng T; Wu Y; Yang X; Feng Q; Mita K
    Genomics; 2019 Dec; 111(6):1231-1238. PubMed ID: 30114452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A reexamination on the deficiency of riboflavin accumulation in Malpighian tubules in larval translucent mutants of the silkworm, Bombyx mori.
    Zhang H; Kiuchi T; Hirayama C; Banno Y; Katsuma S; Shimada T
    Genetica; 2018 Oct; 146(4-5):425-431. PubMed ID: 30094710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional characterization of insect-specific RabX6 of Bombyx mori.
    Uno T; Ozakiya Y; Furutani M; Sakamoto K; Uno Y; Kajiwara H; Kanamaru K; Mizoguchi A
    Histochem Cell Biol; 2019 Feb; 151(2):187-198. PubMed ID: 30132061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.