These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30085218)

  • 1. Disentangling transcription factor binding site complexity.
    Eggeling R
    Nucleic Acids Res; 2018 Nov; 46(20):e121. PubMed ID: 30085218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.
    Nettling M; Treutler H; Cerquides J; Grosse I
    BMC Bioinformatics; 2017 Mar; 18(1):141. PubMed ID: 28249564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved benchmarks for computational motif discovery.
    Sandve GK; Abul O; Walseng V; Drabløs F
    BMC Bioinformatics; 2007 Jun; 8():193. PubMed ID: 17559676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.
    Lu R; Mucaki EJ; Rogan PK
    Nucleic Acids Res; 2017 Mar; 45(5):e27. PubMed ID: 27899659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
    Eggeling R; Grosse I; Grau J
    Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and empirical quality assessment of transcription factor-binding motifs.
    Medina-Rivera A; Abreu-Goodger C; Thomas-Chollier M; Salgado H; Collado-Vides J; van Helden J
    Nucleic Acids Res; 2011 Feb; 39(3):808-24. PubMed ID: 20923783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamotifs--a generative model for building families of nucleotide position weight matrices.
    Piipari M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2010 Jun; 11():348. PubMed ID: 20579334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graph-based motif detection algorithm models complex nucleotide dependencies in transcription factor binding sites.
    Naughton BT; Fratkin E; Batzoglou S; Brutlag DL
    Nucleic Acids Res; 2006; 34(20):5730-9. PubMed ID: 17041233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights gained from a comprehensive all-against-all transcription factor binding motif benchmarking study.
    Ambrosini G; Vorontsov I; Penzar D; Groux R; Fornes O; Nikolaeva DD; Ballester B; Grau J; Grosse I; Makeev V; Kulakovskiy I; Bucher P
    Genome Biol; 2020 May; 21(1):114. PubMed ID: 32393327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.