These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30085710)

  • 1. Light-Cone Spreading of Perturbations and the Butterfly Effect in a Classical Spin Chain.
    Das A; Chakrabarty S; Dhar A; Kundu A; Huse DA; Moessner R; Ray SS; Bhattacharjee S
    Phys Rev Lett; 2018 Jul; 121(2):024101. PubMed ID: 30085710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations.
    Roy D; Huse DA; Kulkarni M
    Phys Rev E; 2023 Nov; 108(5-1):054112. PubMed ID: 38115452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal spread of perturbations in a driven dissipative Duffing chain: An out-of-time-ordered correlator approach.
    Chatterjee AK; Kundu A; Kulkarni M
    Phys Rev E; 2020 Nov; 102(5-1):052103. PubMed ID: 33327101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Dependence of the Butterfly Effect in a Classical Many-Body System.
    Bilitewski T; Bhattacharjee S; Moessner R
    Phys Rev Lett; 2018 Dec; 121(25):250602. PubMed ID: 30608848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum and Classical Lyapunov Exponents in Atom-Field Interaction Systems.
    Chávez-Carlos J; López-Del-Carpio B; Bastarrachea-Magnani MA; Stránský P; Lerma-Hernández S; Santos LF; Hirsch JG
    Phys Rev Lett; 2019 Jan; 122(2):024101. PubMed ID: 30720302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early-Time Exponential Instabilities in Nonchaotic Quantum Systems.
    Rozenbaum EB; Bunimovich LA; Galitski V
    Phys Rev Lett; 2020 Jul; 125(1):014101. PubMed ID: 32678633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet.
    Ljubotina M; Žnidarič M; Prosen T
    Phys Rev Lett; 2019 May; 122(21):210602. PubMed ID: 31283341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiclassical Limit of a Measurement-Induced Transition in Many-Body Chaos in Integrable and Nonintegrable Oscillator Chains.
    Ruidas S; Banerjee S
    Phys Rev Lett; 2024 Jan; 132(3):030402. PubMed ID: 38307083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arresting Classical Many-Body Chaos by Kinetic Constraints.
    Deger A; Roy S; Lazarides A
    Phys Rev Lett; 2022 Oct; 129(16):160601. PubMed ID: 36306744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fingerprint of chaos and quantum scars in kicked Dicke model: an out-of-time-order correlator study.
    Sinha S; Ray S; Sinha S
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kardar-Parisi-Zhang scaling for an integrable lattice Landau-Lifshitz spin chain.
    Das A; Kulkarni M; Spohn H; Dhar A
    Phys Rev E; 2019 Oct; 100(4-1):042116. PubMed ID: 31770874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical approach to equilibrium of out-of-time ordered correlators in mixed systems.
    Notenson T; García-Mata I; Roncaglia AJ; Wisniacki DA
    Phys Rev E; 2023 Jun; 107(6-1):064207. PubMed ID: 37464719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling properties of growing noninfinitesimal perturbations in space-time chaos.
    López JM; Primo C; Rodríguez MA; Szendro IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056224. PubMed ID: 15600745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial perturbation matters: Implications of geometry-dependent universal Kardar-Parisi-Zhang statistics for spatiotemporal chaos.
    Fukai YT; Takeuchi KA
    Chaos; 2021 Nov; 31(11):111103. PubMed ID: 34881614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of topological and non-topological edge states on information propagation and scrambling in a Floquet spin chain.
    Sur S; Sen D
    J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38061070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.
    Rozenbaum EB; Ganeshan S; Galitski V
    Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-integrable systems are slow to thermalize but may be good scramblers.
    Goldfriend T; Kurchan J
    Phys Rev E; 2020 Aug; 102(2-1):022201. PubMed ID: 32942492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain.
    Rosenberg E; Andersen TI; Samajdar R; Petukhov A; Hoke JC; Abanin D; Bengtsson A; Drozdov IK; Erickson C; Klimov PV; Mi X; Morvan A; Neeley M; Neill C; Acharya R; Allen R; Anderson K; Ansmann M; Arute F; Arya K; Asfaw A; Atalaya J; Bardin JC; Bilmes A; Bortoli G; Bourassa A; Bovaird J; Brill L; Broughton M; Buckley BB; Buell DA; Burger T; Burkett B; Bushnell N; Campero J; Chang HS; Chen Z; Chiaro B; Chik D; Cogan J; Collins R; Conner P; Courtney W; Crook AL; Curtin B; Debroy DM; Barba ADT; Demura S; Di Paolo A; Dunsworth A; Earle C; Faoro L; Farhi E; Fatemi R; Ferreira VS; Burgos LF; Forati E; Fowler AG; Foxen B; Garcia G; Genois É; Giang W; Gidney C; Gilboa D; Giustina M; Gosula R; Dau AG; Gross JA; Habegger S; Hamilton MC; Hansen M; Harrigan MP; Harrington SD; Heu P; Hill G; Hoffmann MR; Hong S; Huang T; Huff A; Huggins WJ; Ioffe LB; Isakov SV; Iveland J; Jeffrey E; Jiang Z; Jones C; Juhas P; Kafri D; Khattar T; Khezri M; Kieferová M; Kim S; Kitaev A; Klots AR; Korotkov AN; Kostritsa F; Kreikebaum JM; Landhuis D; Laptev P; Lau KM; Laws L; Lee J; Lee KW; Lensky YD; Lester BJ; Lill AT; Liu W; Locharla A; Mandrà S; Martin O; Martin S; McClean JR; McEwen M; Meeks S; Miao KC; Mieszala A; Montazeri S; Movassagh R; Mruczkiewicz W; Nersisyan A; Newman M; Ng JH; Nguyen A; Nguyen M; Niu MY; O'Brien TE; Omonije S; Opremcak A; Potter R; Pryadko LP; Quintana C; Rhodes DM; Rocque C; Rubin NC; Saei N; Sank D; Sankaragomathi K; Satzinger KJ; Schurkus HF; Schuster C; Shearn MJ; Shorter A; Shutty N; Shvarts V; Sivak V; Skruzny J; Smith WC; Somma RD; Sterling G; Strain D; Szalay M; Thor D; Torres A; Vidal G; Villalonga B; Heidweiller CV; White T; Woo BWK; Xing C; Yao ZJ; Yeh P; Yoo J; Young G; Zalcman A; Zhang Y; Zhu N; Zobrist N; Neven H; Babbush R; Bacon D; Boixo S; Hilton J; Lucero E; Megrant A; Kelly J; Chen Y; Smelyanskiy V; Khemani V; Gopalakrishnan S; Prosen T; Roushan P
    Science; 2024 Apr; 384(6691):48-53. PubMed ID: 38574139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Stochastic Spin Chains to Quantum Kardar-Parisi-Zhang Dynamics.
    Jin T; Krajenbrink A; Bernard D
    Phys Rev Lett; 2020 Jul; 125(4):040603. PubMed ID: 32794778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.